-
本实验中所用的激光加工设备是江苏大学KSL-1000型Nd: YAG纳秒脉冲激光器(包括3-D移动平台和高速摄像机),主要技术参量如表 1所示。
Table 1. Main Technical parameters of KSL-1000 Nd: YAG nanosecond pulse laser
wavelength/nm laser energy/mJ pulse width/ns frequency/Hz 1064/532/355 0~1000 3~10 1~10 在激光器的技术参量范围内,选择输出波长1064nm、重复频率10Hz、脉宽10ns的激光器参量,4组不同的激光能量分别为150mJ,300mJ,450mJ和600mJ,光斑直径1mm。经验证,本实验中的激光功率密度达到109W/cm2量级,能够满足材料等离子化的要求。
与微晶石墨相比,鳞片石墨的石墨化程度和有效结晶度更高,片层结构更好,所以实验中采用的碳源是粒径30μm的天然鳞片石墨,称量一定体积的去离子水将其制成浓度0.03g/mL的石墨悬浮液。实验过程中,在磁力加热搅拌器的作用下,保证石墨悬浮液均匀分散,循环流动。
根据以上选定的实验参量,对石墨悬浮液进行激光辐照实验,每组实验的辐照时间均为1h。
液相脉冲激光辅助制备单壁碳纳米角的研究
Preparation of single-wall carbon nanohorns assisted by liquid medium and pulsed laser
-
摘要: 为了探索出一种可控、稳定、高效的制备碳纳米角的方法,采用高功率、短脉冲Nd:YAG激光器对悬浮于液相介质中的天然鳞片石墨颗粒进行激光辐照,并通过高分辨率透射电镜、激光喇曼光谱等检测手段对实验产物进行表征,对实验结果进行了理论分析与实验验证。结果表明,激光能量为150mJ,300mJ,450mJ和600mJ时,对应的产物分别为seed型、bud型、dahlia型和petal-dahlia型碳纳米角;4种形态的碳纳米角的粒径均分布于10nm~80nm范围内,平均粒径分别为29nm,33nm,36nm和38nm。该研究对制备出不同形态的碳纳米角是有帮助的。Abstract: In order to explore a controllable, stable and efficient method for preparing carbon nanohorns, Nd:YAG laser with high power and short pulse was used to irradiate natural flake graphite particles suspended in liquid medium.The experimental products were characterized by high resolution transmission electron microscopy and laser Raman spectroscopy.The experimental results were analyzed theoretically and experimentally.The results show that, when laser energy is 150mJ, 300mJ, 450mJ and 600mJ, the corresponding products are carbon nanohorns of seed type, bud type, dahlia type and petal-dahlia type respectively.The particle sizes of the four kinds of carbon nanohorns are all distributed in the range of 10nm to 80nm with average sizes of 29nm, 33nm, 36nm and 38nm, respectively.This study is helpful to prepare different forms of carbon nanohorn materials.
-
Key words:
- laser technique /
- single-wall carbon nanohorn /
- laser energy /
- particle size distribution
-
Table 1. Main Technical parameters of KSL-1000 Nd: YAG nanosecond pulse laser
wavelength/nm laser energy/mJ pulse width/ns frequency/Hz 1064/532/355 0~1000 3~10 1~10 -
[1] IIJIMA S, YUDASAKA M, YAMADA R, et al. Nano-aggregates of single-walled graphitic carbon nano-horns[J]. Chemical Physics Letters, 1999, 309(3/4):165-170. [2] BANDOW S, KOKAI F, TAKAHASHI K, et al. Interlayer spacing anomaly of single wall carbon nanohorn aggregates[J]. Chemical Physics Letters, 2000, 321(5/6):514-519. [3] FAN J, YUDASAKA M, KASUYA Y, et al. Influence of water on desorption rates of benzene adsorbed within single-wall carbon nanohorns[J]. Chemical Physics Letters, 2004, 397(1):5-10. [4] ZHU S, NIU W, LI H, et al. Single-walled carbon nanohorn as new solid-phase extraction adsorbent for determination of 4-nitrophenol in water sample[J]. Talanta, 2009, 79(5):1441-1445. doi: 10.1016/j.talanta.2009.06.011 [5] ZHU S, LI H, NIU W, et al. Simultaneous electrochemical determination of uric acid, dopamine, and ascorbic acid at single-walled carbon nanohorn modified glassy carbon electrode[J]. Biosensors & Bioelectronics, 2009, 25(4):940-943. [6] LIU X, SHI L, NIU W, et al. Amperometric glucose biosensor based on single-walled carbon nanohorns[J]. Biosensors & Bioelectronics, 2008, 23(12):1887-1890. [7] LIU X, LI H, WANG F, et al. Functionalized single-walled carbon nanohorns for electrochemical biosensing[J]. Biosensors & Bioelectronics, 2010, 25(10):2194-2199. [8] MOGHIMI S M, HUNTER A C, MURRAY J C. Long-circulating and target-specific nanoparticles:Theory to practice[J]. Pharmacological Reviews, 2001, 53(2):283-318. [9] XU J, YUDASAKA M, KOURABA S, et al. Single wall carbon nanohorn as a drug carrier for controlled release[J]. Chemical Physics Letters, 2008, 461(4/6):189-192. [10] LI N, WANG Z, ZHAO K, et al. Synthesis of single-wall carbon nanohorns by acr-discharge in air and their formation mechanism[J]. Carbon, 2010, 48(5):1580-1585. doi: 10.1016/j.carbon.2009.12.055 [11] KASUYA D, YUDASAKA M, TAKAHASHI K, et al. Selective production of single-wall carbon nanohorn aggregates and their formation mechanism[J]. Journal of Physical Chemistry, 2002, B106(19):4947-4951. [12] SANO N. Low-cost synthesis of single-walled carbon nanohorns using the arc in water method with gas injection[J]. Journal of Physics, 2004, D37(8):L17. [13] YAMAGUCHI T, BANDOW S, ⅡJIMA S. Synthesis of carbon nanohorn particles by simple pulsed arc discharge ignited between pre-heated carbon rods[J]. Chemical Physics Letters, 2004, 389(1/3):181-185. [14] MIRABILE GATTIA D, VITTORI ANTISARI M, MARAZZI R. AC arc discharge synthesis of single-walled nanohorns and highly convoluted graphene sheets[J]. Nanotechnology, 2007, 18(25):255604. doi: 10.1088/0957-4484/18/25/255604 [15] YANG T, ZHOU W F, YANG J D, et al. Effect of laser shot peening on high temperature property of Ti-6Al-4V titanium alloy[J]. Laser Technology, 2017, 41(4):526-530(in Chinese). [16] YANG J D, ZHOU W F, YANG T, et al. Nanocrystallization of Ti-6Al-4V alloy by multiple laser shock processing[J]. Laser Technology, 2017, 41(5):754-758(in Chinese). [17] QIAN X Zh, WANG Q Q, REN N F. Optimization of laser drilling processing parameters for SUS304 based on orthogonal experiments[J]. Laser Technology, 2017, 41(4):578-581(in Chinese). [18] ZHEN L M, LÜ Y W, TANG Sh X, et al. Phase growth mechanism of ultra-fine nano-diamond prepared by nanosecond laser[J]. Laser Technology, 2016, 40(1):25-28(in Chinese).