-
图 1中给出了相干偏振合成的基本光路结构。图中α是HWP光轴和y轴之间的夹角。具有相同频率并且偏振方向相互正交的线偏振光(p光和s光),当它们的相位差锁定为π的整数倍时,通过偏振合束器合成为一束偏振光,再通过半波片调整其偏振态成为p光(或者s光)后,可进行下一级的合成。参与合成的两光场为:
$ {E_1}(x,y,{\beta _1}) = {A_1}({\beta _1}){\rm{exp}}[({x^2} + {y^2})/{w^2}] $
(1) $ {E_2}(x,y,{\beta _2},\delta ) = {A_2}({\beta _2}){\rm{exp}}\left[ {\frac{{ - ({x^2} + {y^2}){\rm{ }}}}{{{w^2}}}} \right]{\rm{exp}}({\rm{i}}\delta ) $
(2) 式中,A1(β1)=A1cosβ1,A2(β2)=A2cosβ2,w为束腰半径,δ为两光束的相位差,A1和A2分别为两光束的振幅, β1和β2分别为两入射光束的偏振误差。
令δ=kπ(k为整数),两光束合成后在y轴方向的光强Ⅰ和光功率P分别为:
$ I = {[{E_1}{\rm{cos}}\left( {\pi /4} \right) + {E_2}{\rm{sin}}\left( {\pi /4} \right)\left] \cdot \right[{E_1}{\rm{cos}}\left( {\pi /4} \right) + {E_2}{\rm{sin}}\left( {\pi /4} \right)]^*} $
(3) $ P = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {I{\rm{d}}x{\rm{d}}y} } $
(4) 式中,上标符号*表示共轭复数。两光束存在偏振误差就会引起不同的合成光功率。
考虑到参与合成的两光束输入总功率P0为:
$ {P_0} = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } {({E_1}^2 + {E_2}^2){\rm{d}}x{\rm{d}}y} } $
(5) 则可以定义一个单元的相干偏振合成效率ηc为:
$ {\eta _c} = P/{P_0} $
(6) 从推导过程可知,在其它参量不变时,两光束如果存在偏振误差就会引起合成效率的变化。
-
由于单路激光的功率有限,通过系统拓展可以实现多路激光的相干合成,进而获得高功率。根据偏振合成的光路结构,光路拓展采用的方案如图 2所示。
图 2是几种主要拓展结构的光路示意图。Y型结构的特点是每一级参与合成的光束光强都相等,R型结构的特点是合成光强呈Z字形走向,F型结构的特点是光路最简单,可以通过线性级联的方式实现拓展。在结构拓展时,如果光束数目是N,整个系统至少需要N-1个PBC,2(N-1)个HWP,考虑到光能量在这两个元件中产生的损耗,Y型,R型,F型3种结构拓展后整个系统的合成效率分别为:
$ \left\{ \begin{array}{l} {\eta _{\rm{Y}}} = {\eta _{\rm{c}}}^m{\rm{ }}\left[ {\frac{{{T_{{\rm{HWP}}}}({R_{{\rm{PBC}}}} + {T_{{\rm{PBC}}}}){\rm{ }}}}{2}} \right]{^m},(m = {\rm{lo}}{{\rm{g}}_2}N){\rm{ }}\\ {\eta _{\rm{R}}} = [ - {T_{{\rm{HWP}}}}^N{\eta _{\rm{c}}}^N{R_{{\rm{PBC}}}}^{}N + (1 - {T_{{\rm{HWP}}}}{\eta _{\rm{c}}}{T_{{\rm{PBC}}}}){T_{{\rm{HWP}}}}^{N - 1} \times \\ {\rm{ }}{\eta _{\rm{c}}}^{N - 1}{R_{{\rm{PBC}}}}^{N - 1} + {T_{{\rm{HWP}}}}{\eta _{\rm{c}}}{T_{{\rm{PBC}}}}]/[N(1 - {T_{{\rm{HWP}}}}{\eta _{\rm{c}}}{R_{{\rm{PBC}}}})]\\ {\eta _{\rm{F}}} = [ - {T_{{\rm{HWP}}}}^N{\eta _{\rm{c}}}^N{T_{{\rm{PBC}}}}^N + (1 - {T_{{\rm{HWP}}}}{\eta _{\rm{c}}}{R_{{\rm{PBC}}}}){T_{{\rm{HWP}}}}^{N - 1} \times \\ {\rm{ }}{\eta _{\rm{c}}}^{N - 1}{T_{{\rm{PBC}}}}^{N - 1} + {T_{{\rm{HWP}}}}{\eta _{\rm{c}}}{T_{{\rm{PBC}}}}]/[N(1 - {T_{{\rm{HWP}}}}{\eta _{\rm{c}}}{R_{{\rm{PBC}}}})] \end{array} \right. $
(7) 式中,ηc为单元合成效率,RPBC和TPBC分别为PBC对光束的反射率和透射率,THWP为HWP对光束的透射率,N为光束数目。
偏振误差对相干偏振合成效率的影响
Effect of polarization error on combining efficiency of coherent polarization beam
-
摘要: 为了进一步提高相干偏振合成的效率,采用数值模拟方式,对偏振误差的影响及系统的拓展性进行了分析,并计算了偏振误差在3种不同拓展结构下对相干偏振合成效率的影响。当偏振合束器的透过率和反射率分别是96%和99.5%、半波片的透过率是99.7%时,Y型结构16路光束的整体合成效率会在偏振误差增大到0.03rad时下降0.33%;随着合成路数的增大,合成效率逐渐降低,当光束拓展至128路时,Y型结构的合成效率将下降至83%。结果表明,光功率相对平衡的Y型结构具有最高的合成效率,同时受偏振误差的影响最小。该研究确定了系统的最佳合成方案,为基于相干偏振合成的效率分析提供了参考。Abstract: To further improve combining efficiency of polarized beam combination, effect of polarization error and systematical extensibility were analyzed byusing numerical simulation method. The influence of polarization error on combining efficiency of coherent polarization beams was calculated under three kinds of different expanded structures. The overall combining efficiency of 16 path beamswith Y structure decreases 0.33% when the transmittance of polarization beam combiner(PBC) and the reflectance of PBC are 96% and 99.5% respectively, the transmittance of the half wave-plate is 99.7% and polarization error is 0.03rad. The combining efficiency declines gradually with the increase of beam number.The combining efficiency of 128 beams with Y structure drops to 83%. The results show that, Y structure with the relative balance of light power has the highest combining efficiency, and has the least influence by the polarization error.This study determines the optimal combining scheme of the system and provides a reference for the efficiency analysis based on coherent polarization combination.
-
Key words:
- laser technique /
- combining efficiency /
- polarization combination /
- polarization error
-
-
[1] YU C X, AUGST S J, REDMOND S M, et al. Coherent combining of a 4kW, eight-element fiberamplifier array[J]. Optics Letters, 2011, 36(14):2686-2688. doi: 10.1364/OL.36.002686 [2] ZHOU J, TANG X J, CHEN S B, et al. Influence of system deviation on laser coherent combination[J]. Laser & Infrared, 2015, 45(4):378-382(in Chinese). [3] LI F D, GUO H N, SUN J G, et al. Simulation and experimental study on coherentcombinationof dual beam fiber laser[J]. Laser Technology, 2014, 38(4):509-514(in Chinese). [4] JIANG, M H, SU Y, LU F, et al. Influence of polarization on laser beam coherent combining[J].High Power Laser and Particle Beams, 2013, 25(3):611-614(in Chinese). doi: 10.3788/HPLPB [5] SHI X G, DOU R H, JING Sh, et al. Influence of system jitter on far field of coherently combined beam[J]. Laser Technology, 2009, 33(5):493-496(in Chinese). [6] JIANG M H, SU Y, LU F, et al. Influence of duty ratio on laser beam coherent combining[J]. Laser & Infrared, 2012, 42(10):1103-1106(in Chinese). [7] LI B, LIU Y, ZENG Sh G, et al. Study on coherent beam combination of fiber laser array[J].Laser Technology, 2015, 39(5):712-716(in Chinese). [8] UBERNA R, BRATCHER A, TIEMANN B G. Power scaling of a fiber master oscillator power amplifier system using a coherent polarization beam combination[J]. Applied Optics, 2010, 49(35):6762-6765. doi: 10.1364/AO.49.006762 [9] UBERNA R, BRATCHER A, TIEMANN B G. Coherent polarization beam combination[J]. IEEE Journal of Quantum Electronics, 2010, 46(8):1191-1196. doi: 10.1109/JQE.2010.2044976 [10] PHUA P B, LIM Y L. Coherent polarization locking with near-perfect combining efficiency[J]. Optics Letters, 2006, 31(14):2148-2150. doi: 10.1364/OL.31.002148 [11] KLENKE A, BREITKOPF S, KIENEL M, et al. 530W, 1.3mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2013, 38(13):2283-2285. [12] MA P F, WANG X L. Coherent polarization beam combining of fiber lasers to 2kW power-level[J]. High Power Laser and Particle Beams, 2016, 28(4):4-5(in Chinese). [13] CAO F L, ZHANG R Zh. Effects of system errors on coherent polarization beam combining efficiency[J]. High Power Laser and Particle Beams, 2015, 27(6):96-101(in Chinese). [14] DONG H C, LIU Y, YI K, et al. Theory analysis of polarized coherent combination. Chinese Journal of Lasers, 2009, 36(9):2346-2351(in Chinese). doi: 10.3788/JCL [15] LU Ch Y, LIU X, LIU Y, et al. Coherent combining of two beams based on polarization phase locking[J]. Chinese Journal of Lasers, 2009, 36(6):1437-1441(in Chinese). doi: 10.3788/JCL