Polarization interference system based on single polarization parallel beam splitter
-
摘要: 为了克服常规偏光干涉系统中核心器件萨瓦板(Savart)偏光镜制作工艺复杂、装调难度高的缺点,解决由于Savart偏光镜装调、加工误差造成的偏光干涉系统条纹混叠和调制度下降的问题,采用了一种基于单平行分束器(SPBS)的偏光干涉系统的方法,分析了系统的结构原理,采用矩阵传递函数推导了经偏光干涉系统出射光的琼斯矩阵及相干叠加强度,得出了和基于Savart偏光镜的干涉系统类似的干涉结果,分析了系统光程差与入射角及入射面的变化关系,并通过实验验证了理论分析的正确性。结果表明,由于SPBS结构简单,不需要多个单元组合,所以不存在装调误差,并且大幅度降低了加工误差。Abstract: In order to overcome the detects of Savart polarizer, which is the core device of polarizing interference system, such as complex fabrication process and high difficulty in assembling and adjusting, and to solve problems of interference fringe overlying and modulation decline caused by the assembling and processing errors of Savart polarizer, a method of a polarizing interference system based on a single parallel beam splitter (SPBS) was adopted. The structure and principle of this system were analyzed. Jones matrix and coherence intensity of the light exited from the polarizing interferometer system were derived by matrix transfer function. The interference effect is similar to that of the interferometer system based on Savart polarizer. The relationships between the optical path difference of the system and the incident angle and the incident surface were also analyzed. The correctness of the theoretical analysis was verified by experiments. The results show that because SPBS is simple in structure and not required Multiple unit combinations, there is no assembly error, and the processing error will be greatly reduced.
-
-
-
[1] YANG J Sh, HAN P G, YAN J F, et al. Analysis of beam-splitting characteristics of Wollaston-type polarizing prisms[J]. Laser Techno-logy, 2018, 42(2):249-253(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201802021
[2] YANG H L, SONG L K, WANG R X, et al. Design of the α-BBO crystal Wollaston prism-based on the imaging spectrometer[J]. Laser Technology, 2014, 38(1):79-82(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201401017
[3] KUDENOV M W, JUNGWIRTH M E L, DERENIAK E L, et al. White light Sagnac interferometer for snapshot linear polarimetric imaging[J]. Optics Express, 2009, 17(25): 22520-22534. DOI: 10.1364/OE.17.022520
[4] YUAN X P, ZHANG D W, WANG Ch, et al. Research progress in human tissue detection technologies based on reflection hyperspectra[J]. Optical Instruments, 2017, 39(1): 73-80(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxyq201701013
[5] MURAKAMI N, BABA N. Common-path lateral-shearing nulling interferometry with a Savart plate for exoplanet detection[J]. Optics Letters, 2010, 35(18):3003-3005. DOI: 10.1364/OL.35.003003
[6] ABDELSALAM I G D. Rough surface characterization suing off-axis digital holographic microscopy compensated with self-hologram rotation[J]. Current Applied Physics, 2018, 18(11): 1261-1267. DOI: 10.1016/j.cap.2018.07.003
[7] CAO Q, ZHANG J, DEHOOG E, et al. Demonstration of snapshot imaging polarimeter using modified Savart polariscopes[J]. Applied Optics, 2016, 55(5): 954-959. DOI: 10.1364/AO.55.000954
[8] LIU X J, LIU L Y, LI X Zh, et al. Comparision on classification results based on date of TG-1and HJ-1CCD[J]. Remote Sensing Infor-mation, 2013, 28(3):74-79(in Chinese). https://www.zhangqiaokeyan.com/academic-journal-cn_remote-sensing-information_thesis/0201254402747.html
[9] ZHANG J, YUAN C A, HUANG G H, et al. Acquisition of a full-resolution image and aliasing reduction for a spatially modulated imaging polarimeter with two snapshots[J]. Applied Optics, 2018, 57(10):2376-2382. DOI: 10.1364/AO.57.002376
[10] WATANABE A, FURUKAWA H. High-resolution and high-throughput multichannel Fourier transform spectrometer with two-dimensional interferogram warping compensation[J]. Optics Communications, 2018, 413:8-13. DOI: 10.1016/j.optcom.2017.12.024
[11] ROLAND A T, JUAN P T, VALERIO P. Technique for generating periodic structrued light beams using birefringent elemnts[J]. Optics Express, 2018, 26(22): 28938-28947. DOI: 10.1364/OE.26.028938
[12] BU M M, NIU M Sh, WANG T, et al. Dual four-channel simultaneous interference imaging spectrometer[J]. Acta Optica Sinica, 2017, 37(8): 811001(in Chinese). DOI: 10.3788/AOS201737.0811001
[13] WANG T, NIU M Sh, BU M M, et al. Polarization-difference imaging system with adjustable optical path and its characteristics[J]. Acta Optica Sinica, 2017, 37(7): 711001(in Chinese). DOI: 10.3788/AOS201737.0711001
[14] MU T, ZHANG C, ZHAO B. Principle and analysis of a polarization imaging spectrometer[J]. Applied Optics, 2009, 48(12):2333-2339. DOI: 10.1364/AO.48.002333
[15] BORE M, WOLF E. Principles of optics[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2009:23(in Chinese).
[16] YAN J X, WEI G H, HA L Zh, et al. Matrix optics[M]. Beijing: Weapon Industry Press, 1995:144-186(in Chinese).
[17] HOU T, CAO F L, ZHANG R Zh. Effect of polarization error on combining efficiency of coherent polarization beam[J]. Laser Technology, 2018, 42(4):572-576(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201804026
[18] FU Y D, WU F Q, NING G Y. Characteristics of splitting angles of micro-angle beam splitting polarization prisms[J]. Laser Technology, 2017, 41(3): 402-405 (in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703019
[19] SUN D, WU F Q, YUE Z Y, et al. Design and performance analysis of double semarmont prism[J]. Opitics & Optoelectronic Technology, 2015, 13(6): 100-104(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxygdjs201506023
[20] WU F Q, WU W D, SU F F, et al. Study on colour fading and optical properties of iceland crystal[J]. Acta Optica Sinica, 2015, 35(9): 916004(in Chinese). DOI: 10.3788/AOS201535.0916004
[21] MU T, ZHANG C, REN W, et al. Interferometric verification for the polarization imaging spectrometer[J]. Journal of Modern Optics, 2011, 58(2):154-159. DOI: 10.1080/09500340.2010.547621