-
使用雪崩光电二极管的要点是根据实际情况,选择最佳偏置电压,使其工作在最佳倍增因子状态。所谓最佳倍增因子就是系统得到最大信噪比(signal-to-noise ratio, SNR)时所对应的倍增因子[6-15]。
-
将雪崩管与前置放大器视为一体,其噪声模型如图 1所示[7-8]。图中,APD为雪崩光电二极管(avalanche photodiode), OPA为光电放大器(optical photonical amplifier)。IRa为跨阻电流,IAPD为雪崩常电流。据此噪声模型,光电转换之后的信号-噪声对应的功率信噪比RSNR可表示为[7-8]:
$ {R_{{\rm{SNR}}}} = \frac{{{{\left( {MR{P_{\rm{s}}}} \right)}^2}}}{{N_{\rm{r}}^2B}} $
(1) $ {I_{{\rm{PD}}}} = \left( {{P_{\rm{s}}} + {P_{\rm{b}}}} \right)R $
(2) $ \begin{array}{*{20}{c}} {N_{\rm{r}}^2 = 2q\left[ {{I_{\rm{d}}} + \left( {{I_{\rm{b}}} + {I_{{\rm{PD}}}}} \right){M^2}F} \right] + }\\ {2q{I_{\rm{a}}} + {{\left( {{V_{\rm{a}}}\omega C} \right)}^2} + \frac{{4kT}}{{{R_{\rm{a}}}}}} \end{array} $
(3) 式中, M是雪崩倍增因子,Ps是入射信号光功率,Pb是入射背景光功率,B为光接收单元带宽,Nr为光接收单元总噪声,R是单位倍增因子条件下光谱响应度,Id是面暗电流,Ib是体暗电流,IPD是光电流,F是过剩噪声因子,q是电子电荷,ω是前置放大器的截止带宽,C是总等效输入电容,Ra是前置放大器的跨阻,Ia是前置放大器等效输入噪声电流,Va是前置放大器等效输入噪声电压,k是玻尔兹曼常数,T是温度。
载流子在碰撞电离倍增过程中,信号光电流平均增加M倍,而载流子的倍增有起伏,导致了噪声功率的倍增因子大于M2,一般用M2F来表示,F与倍增因子M有关,为便于计算,将M2F记为Mn,n>2,n值的大小与探测器材料、结构有密切关系[6]。则光接收单元总噪声可表示为:
$ \begin{array}{*{20}{c}} {N_{\rm{r}}^2 = 2q\left[ {{I_{\rm{d}}} + \left( {{I_{\rm{b}}} + {I_{{\rm{PD}}}}} \right){M^n}} \right] + 2q{I_{\rm{a}}} + }\\ {{{\left( {{V_{\rm{a}}}\omega C} \right)}^2} + \frac{{4kT}}{{{R_{\rm{a}}}}}} \end{array} $
(4) 将(4)式带入(1)式,对功率信噪比求1阶导数,令其为零,进而求得最佳倍增因子:
$ {M_{{\rm{opt}}}} = {\left[ {\frac{{2q{I_{\rm{d}}} + 2q{I_{\rm{a}}} + {{\left( {{V_{\rm{a}}}\omega C} \right)}^2} + \frac{{4kT}}{{{R_{\rm{a}}}}}}}{{\left( {n - 2} \right)q\left( {{I_{\rm{b}}} + {I_{{\rm{PD}}}}} \right)}}} \right]^{1/n}} $
(5) 从最佳倍增因子等式可以看出,当探测器、前置放大器、负载电阻以及入射光功率确定后,影响最佳倍增因子的主要参量是温度T,其中Id, ω, IPD, Ib, 4kT/Ra均受温度的影响。试验表明,最大功率信噪比对应的最佳倍增因子受温度的影响不大,如图 2所示[7]。但温度的变化会引起倍增因子偏离最佳倍增因子Mopt。为了补偿这一变化,需设计最佳倍增因子线性化温控电路。
-
倍增因子不仅与探测器的结构和材质有关,还随温度和雪崩偏压的改变而变化。倍增因子M可表示为[7-8]:
$ M = \frac{K}{{{{\left( {{V_{{\rm{break}}}} - {V_{{\rm{bias}}}}} \right)}^m}}} $
(6) 式中,系数K, m仅与探测器的结构、材质有关,当探测器确定时,其值为常数;Vbias是雪崩管工作偏压,Vbreak表示一定温度下探测器对应的雪崩击穿电压,其值与温度呈线性关系。倍增因子恒定时,雪崩管探测器的温度,即雪崩击穿电压系数的典型值是2.2V/℃。采用温度补偿措施,调节探测器雪崩工作偏压以2.2V/℃的变化率变化,即可补偿温度变化引起倍增因子对最佳倍增因子的偏离。
-
雪崩管偏压线性化温控电路由以下单元组成:负温度系数(negative temperature coefficient, NTC)热敏电阻/电压转换单元、自然对数放大器单元、温漂抑制单元、加法器、跟随器、高压转换单元,如图 3所示。
制冷型雪崩管探测器内置负温度系数热敏电阻,其阻值R(T)与温度关系如下:
$ R\left( T \right) = 5.1 \times \exp \left[ {3200 \times \left( {\frac{1}{T} - \frac{1}{{298}}} \right)} \right] $
(7) 可简化为:
$ R\left( T \right) = \alpha \exp \left( {\frac{\beta }{T}} \right) $
(8) 式中,系数α=0.0001111,β=3200。负温度系数热敏电阻阻值-温度曲线见图 4。
负温度系数热敏电阻线性化温控电路设计见图 5。输出电压Vo可表示为[14]:
$ {V_{\rm{o}}} = aT + b $
(9) $ a = - \left( {1 + \frac{{{R_3}}}{{{R_4}}}} \right) \times \frac{1}{{11600}} \times \ln \left( {\frac{{ - \alpha \times {R_2} \times {V_8}}}{{{R_8} \times {R_1} \times {V_2}}}} \right) $
(10) $ b = - \left( {1 + \frac{{{R_3}}}{{{R_4}}}} \right) \times \frac{\beta }{{11600}} $
(11) 加法器输出的电压Vctrl可表示为:
$ {V_{{\rm{ctrl}}}} = \left( {\frac{{{V_{\rm{o}}}}}{{{R_5}}} + \frac{{{V_{{\rm{base}}}}}}{{{R_6}}}} \right) \times {R_7} $
(12) 设计高压转换电路单元,该电路是一种零伏起调促进升压变换单元,包含驱动部分、逆变部分、整流部分、滤波部分、采样部分、运算放大部分,克服了传统高压电源在起调时的电压过高或存在振荡的缺点,其功能框图见图 6。该促进升压变换电路输入输出关系如图 7所示,其中,离散点为测试值,直线为离散点的1阶拟合曲线,输出高压VHV的1阶拟合曲线可表示为:
$ {V_{{\rm{HV}}}} = 218.531{V_{{\rm{ctrl}}}} + 7.717 $
(13) 测试数据与拟合曲线的均方根值误差仅为0.945。
将(9)式~(12)式带入(13)式,并(13)式求温度T的1阶导数,欲补偿温度变化导致的倍增因子对最佳倍增因子的偏离,则:
$ \frac{{{\rm{d}}{V_{{\rm{HV}}}}}}{{{\rm{d}}T}} = 2.2 $
(14) 令V8=-5V,V2=5V,设置R1, R2, R8, R3, R4, R5, R6, R7适当阻值,根据雪崩管探测器常温实测最佳倍增效果,将T=298K,VHV=350V带入(13)式,求得Vbase=0.723V,最终VHV可简化为:
$ {V_{{\rm{HV}}}} = 2.2T - 305.6 $
(15) VHV关系仿真曲线见图 8。由此可见,从理论上实现了由负温度系数热敏电阻到雪崩管偏压输出的线性化温控功能。
-
在机载全温范围内(-55℃~70℃),测试探测器内置负指数电阻温度与雪崩偏压的关系,测试结果见图 9。其中,离散点为测试值,直线为离散点的1阶拟合曲线,1阶拟合曲线可表示为:Vbias=2.29T+305.6,测试数据与拟合曲线的均方根值误差为1.019。试验表明,最佳倍增因子线性化温控电路的温度系数为2.29V/℃,与理论分析值2.2V/℃接近,偏差仅为4%。
将上述最佳倍增因子线性化温控电路应用于机载激光测距系统,用激光二极管模拟激光回波,雪崩管探测器将其转换成电信号,主放大器对其进一步放大后,输入到数字信号处理电路,如图 10所示。采集不同温度对应的回波波形,如图 11所示。回波信号幅值和反冲宽度间接反映了探测器倍增因子的大小。从测试波形可以看出,-52.5℃,18.5℃,69℃对应的波形接近一致,也就是说,其对应的倍增因子接近一致,试验结果表明, 最佳倍增因子线性化温控电路在全温范围内具有良好的性能。
雪崩管最佳倍增因子线性化温控技术研究
Study on linear temperature control for the optimal multiplication factor of avalanche photodiodes
-
摘要: 为了进一步增强机载激光测距机在全温范围内的环境适应性,分析了温度与探测器模块输出功率信噪比的关系,推导了最佳倍增因子与温度的方程式,阐述了温度变化引起倍增因子对最佳雪崩倍增因子偏离的原因。根据雪崩管探测器雪崩击穿电压的线性温度特性,设计了机载温度范围为-55℃~70℃的基于自然对数法的最佳倍增因子雪崩偏压线性化温控电路,用于补偿因温度变化所引起的倍增因子对最佳雪崩倍增因子的偏离。结果表明,实测雪崩偏压温控系数为2.29V/℃,与理论分析值误差仅为4%。该技术用于新型机载激光测距系统中,获得了良好的试验数据,满足机载环境的特殊需求。Abstract: In order to further enhance the environmental adaptability of an airborne laser rangefinder in the full temperature range, the relationship between temperature and output power signal-to-noise ratio of a detector module was analyzed. The equation for the optimum multiplier factor and temperature was derived. The reasons for the deviation of the best avalanche multiplier factor caused by temperature change were expounded. According to linear temperature characteristics of the breakdown voltage of an avalanche detector, based on natural logarithm method, a linear temperature controlled circuit of the avalanche bias voltage was designed to compensate the multiplication factor due to temperature in the range of -55℃~70℃. Good test results were obtained with this method used in new airborne laser rangefinders.The experimental results show the measured temperature control coefficient of the avalanche bias voltage is 2.29V/℃ with an error of less than 4% relative to the theoretical coefficient. This method meets the special requirement for airborne environment.
-
[1] LI G Y, CHEN D R. Research on a temperature compensation method of apd photo-electronic detector[J].Journal of Changchun Institute of Optics and Fine Mechanics, 1998, 21(2):49-52(in Chinese). [2] XU Zh P, SHEN H H, XU Y S. Signal-sampling circuit with temperature compensation for APD array[J].Journal of Electronic Measurement and Instrumentation, 2015, 29(10):1500-1506(in Chinese). [3] RONG T P, MIAO L. Temperature compensation of APD optimal bias by MAX6605[J].Journal of Huazhong University of Science and Technology(Natural Science Edition), 2004, 32(5):16-18(in Chinese). [4] SONG J H.Digital control bias circuit of APD with temperature compensation[J].Optics & Optoelectronic Technology, 2013, 11(2):12-15(in Chinese). [5] LI X, PENG H, WANG Ch H. APD optimal gain control investigation for spaceborne laser range finder[J]. Infrared and Laser Engineering, 2016, 45(5):3041-3046(in Chinese). [6] JIANG Y S.Electrooptical technology and experiment[M].Beijing:Beijing Institute of Techinology Publishing House, 2000:354-356(in Chinese). [7] FREDERIC L. Low noise optical receiver using Si APD[J].SPIE, 2009, 7212:523-534. [8] MA J L, FAN X T, YAN D K, et al. Design of laser range finding receiver circuit based on cooling-APD[J]. Infrared and Laser Engineering, 2013, 42(8):2041-2044(in Chinese). [9] PRODUCT DATASHEET GROUP. A user guide-understanding avalanche photodiode for improving system performance[EB/OL].(2017-12-11).http://www.excellitas.com/downloads/app_avalanchephotodiodesusersguide.pdf. [10] PROKE S. Influence of Temperature variation on optical receiver sensitivity and its compensation[J]. Radio Engineering, 2007, 16(3):13-18. [11] PRODUCT DATASHEET GROUP. High-speed low-light analog APD receiver modules LLAM series[EB/OL].(2017-12-11).http://www.excellitas.com/Downloads/DTS_LLAM.pdf. [12] XU Zh P, SHEN H H, XU Y S. Review of the decelopment of laser active imaging system with direct ranging[J]. Journal of Applied Optics, 2015, 8(1):28-38(in Chinese). [13] WU D M.Linear compensation of thermistor temperature sensor[J]. Automation and Instrumentation, 2007, 12(2):66-67(in Chinese). [14] SUN Zh W, LIU Y J. Design of a new performance testing instrument of laser rangefinders[J].Laser Technology, 2011, 35(6):792-794(in Chinese). [15] WU G X, DUAN F J, GUO H T. Optoelectronic heterodyne mixing and parameter optimization of avalance photodiodes[J]. Laser Technology, 2015, 39(6):802-805(in Chinese).