-
入射光在光学棱镜的底面发生全反射时,绝大部分光波会通过其底面以反射光形式发出,但存在小部分光波透射到金属薄膜,称之为倏逝波。在金属薄膜足够薄的条件下,透射光可透过金属薄膜抵达待测液体层和金属薄膜的交界处。当x轴方向倏逝波波矢Kx与水平方向SPW波矢KSPW相匹配(Kx=KSPW)时[9-11],产生SPR现象。
$ {K_x} = \left| {{\mathit{\boldsymbol{K}}_x}} \right| = \frac{\omega }{c}\sqrt {{\varepsilon _0}(\lambda )} {\rm{sin}}{\theta _{{\rm{SPR}}}} $
(1) $ {K_{{\rm{SPW}}}} = \left| {{\mathit{\boldsymbol{K}}_{{\rm{SPW}}}}} \right| = \frac{\omega }{c}\sqrt {\frac{{{\varepsilon _1}\left( \lambda \right){\varepsilon _2}\left( \lambda \right)}}{{{\varepsilon _1}\left( \lambda \right) + {\varepsilon _2}(\lambda )}}} $
(2) $ {K_x} = {K_{{\rm{SPW}}}} $
(3) 式中,θSPR为入射角,ω为光角频率,c为真空中的光速,ε0(λ), ε1(λ), ε2(λ)分别为光学棱镜、金属薄膜、待测液体的介电常数。此时倏逝波与SPW波产生谐振,会存在部分光子能量耦合到SPW波,反射光能量锐减,检测反射光谱曲线出现吸收峰,峰值处对应的波长即为共振波长。
-
在SPR常见的激发结构中,棱镜型结构由于其结构简单、灵敏度高、信号处理方便等优点被广泛应用,其信号检测方法主要有光谱分析[12]和角度扫描[13]。其中,角度法需要角度振镜、精密转台等运动部件,光路结构复杂且重复性和稳定性受到影响。而SPR光谱分析法固定入射角,有效地降低了对高精度实验仪器的需求。此外,光谱分析型传感器灵敏度不会依赖待测样品的特性,更适合于长时间大动态范围的实验[14-16]。因此, 本文中将采用SPR光谱分析对液体折射率进行测量。
在实验前期,为了确定入射角、入射光波长及传感器检测范围等一系列参量,利用传输矩阵法进行MATHEMATICA软件仿真,研究了SPR吸收峰随入射波长和入射角度的变化规律。传输矩阵法作为一种非常重要的光学分析法,通过麦克斯韦方程组和分界面处电磁场连续性条件,用一个2维矩阵表示每一层起始和结尾处的电磁场关系,当入射光传输到两种介质的分界面时,能够计算得到光的反射率和透射率。
根据传输矩阵法,当平面入射光从介质层ε0输入时,平面入射光的电场矢量E0和磁场矢量H0与出射光的电场矢量EN和磁场矢量EN(传输矩阵为多层(N+1)结构)满足关系式如下:
$ \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{E}}_N}}\\ {{\mathit{\boldsymbol{H}}_N}} \end{array}} \right] = \mathit{\boldsymbol{M}} \times \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{E}}_0}}\\ {{\mathit{\boldsymbol{H}}_0}} \end{array}} \right] $
(4) 传输矩阵M是该多层系统结构的特征矩阵,并满足以下关系:
$ \begin{align} &\mathit{\boldsymbol{M}}=\left[ \begin{matrix} {{m}_{11}}&{{m}_{12}} \\ {{m}_{21}}&{{m}_{22}} \\ \end{matrix} \right]={{\mathit{\boldsymbol{M}}}_{1}}\cdots {{\mathit{\boldsymbol{M}}}_{N-1}}= \\ &\ \ \ \ \ \ \ \prod\limits_{k=1}^{N-1}{\left[ \begin{matrix} \text{cos}{{\delta }_{k}}&\frac{\text{isin}{{\delta }_{k}}}{{{\eta }_{k}}} \\ \text{i}{{\eta }_{k}}\text{sin}{{\delta }_{k}}&\text{cos}{{\delta }_{k}}~ \\ \end{matrix} \right]} \\ \end{align} $
(5) 式中,δk为第k层介质的相位因子,表示光在第k层介质的光导纳因子,分别满足以下关系:
$ \begin{array}{l} \;\;{\delta _k} = \frac{{2{\rm{\pi }}{d_k}}}{\lambda }{n_k}{\rm{cos}}\alpha = \\ \frac{{2{\rm{\pi }}{d_k}}}{\lambda }\sqrt {{\varepsilon _k} - {n_0}^2{\rm{si}}{{\rm{n}}^2}\alpha } ,\left( {k = 1,2, \cdots ,N - 1} \right) \end{array} $
(6) $ {\eta _k} = \sqrt {\frac{{{\varepsilon _k} - {n_0}^2{\rm{si}}{{\rm{n}}^2}\alpha }}{{{\varepsilon _k}}}} , \left( {k = 0, 1, \ldots , N} \right) $
(7) 式中,dk为第k层介质的厚度;λ为入射光源的波长;α为光源入射角度;n0为光输入介质层的折射率;nk为第k层介质的折射率,并且满足nk=(εkμk)1/2,其中μk为第k层介质的磁导率。特别是当第k层介质为非磁性介质时,μk=1,即nk=εk1/2。最后,根据传输矩阵M,该多层介质结构在光入射条件下的反射强度为:
$ {\left| r \right|^2} = {\left| {\frac{{({m_{11}} + {m_{12}}{\eta _k}){\eta _0} - ({\eta _k}{m_{22}} + {m_{11}})}}{{({m_{11}} + {m_{12}}{\eta _k}){\eta _0} + ({\eta _k}{m_{22}} + {m_{11}})}}} \right|^2} $
(8) 仿真中棱镜折射率n0=1.51RIU[17],金膜厚度dk=50nm[18],入射波长变化范围为400nm~1000nm,入射角α变化范围为60°~90°,仿真结果如图 1所示。分析表明:SPR存在最佳共振点(α, λ)。图 1中横坐标为入射光波长,纵坐标为入射角度,其中不同色度表示反射光强度除以入射光强度的比值。由图 1中数据可知,在入射角为70°的条件下,峰值(反射光比值为0.1,吸收峰最为明显)位置在波长740nm~760nm处,具有较理想的峰值宽度,以此可以拟定70°为最佳固定入射角。
通过MATHEMATICA模拟波长扫描的信号检测,其中固定入射角度为70°(最佳入射角),即(6)式中参量α=70°,其它参量与图 1仿真参量一致,检测输出端的光谱变化。在仿真中,选取4组折射率递增的待测液体,其折射率分别为n1=1.3328RIU, n2=1.3399RIU, n3=1.3550RIU, n4=1.3602RIU。模拟输入光波长从400nm~1000nm,步长为1nm,得到SPR的反射光谱,如图 2a所示。4种不同折射率的待测液体,其反射光谱曲线均先呈较平滑的下降趋势,之后陡降至某一最低点(共振波长点)再开始回升。不同折射率的待测液体,其反射光谱中的共振波长不同。随着待测液体折射率从1.3328RIU~1.3602RIU逐渐增加,对应待测液体的共振峰的位置依次向右有非常明显的偏移(红移)。灵敏度作为SPR实验最为重要的参考指标之一,分析该SPR仿真的灵敏度也具有现实意义[19-20]。从图 2a中对不同折射率下的共振波长进行数据提取,对灵敏度曲线进行二次多项式曲线拟合[21],绘制灵敏度曲线如图 2b所示。灵敏度拟合公式为y=112899.92-169162.24x+63708.83x2,可决系数R2=0.99998。计算得出传感器的灵敏度可达4151.26nm/RIU。
-
基于SPR光谱分析传感器的实验平台如图 3a所示。该系统采用宽带光源卤素灯作为系统的激发光源(如图 3b所示),耦合进多模光纤,通过准直器形成平行光,以70°的固定入射角经过高折射率(1.515RIU)棱镜耦合,在厚度为50nm金属薄膜表面激发SPR现象,部分光波经金属薄膜反射后的平行光从棱镜出射,再通过装载准直器的光纤,由微型光谱仪接收光信号(如图 3c所示)。通过实时检测反射光谱,比较该信号与入射光谱基信号,得到精准的共振波长值,即可得到样品的折射率与共振波长之间的关系。
Figure 3. a—experimental platform based on surface plasmon resonance spectrum b—excitation source of experiment c—experimental schematic based on surface plasmon resonance
实验样品采用不同比例的蒸馏水与酒精混合溶液,之后利用商用折射率计(Reichert AR2000)对混合溶液进行折射率标定,并放于由聚二甲基硅氧烷(polydimethylsiloxane, PDMS)制成的样品槽中(如图 3c所示),样品槽中溶液能实现与金属薄膜表面充分接触。在实验过程中,入射光并非直接入射到镀有金膜的棱镜表面,而是首先经过棱镜侧边折射后,再以全反角度入射镀膜界面。为了使实际入射角满足全反射条件,在实验前期计算了入射角。实验中采用的是K7等边棱镜,经过计算得到棱镜侧边入射角θin与实际入射角θ1之间的关系为:
$ {\theta _{{\rm{in}}}} = {\rm{arcsin}}\left( {\frac{{{\rm{sin}}{\theta _{{\rm{in}}}}}}{{{n_1}}}} \right) + 60^\circ $
(9) 式中,n0为等边棱镜的折射率,θin和θ1如图 4所示。
-
光线在经过金膜反射后得到的SPR光谱如图 5a所示,在350nm~1100nm波长段,4条反射光谱都存在较宽的吸收峰。为了进一步确定SPR光谱的反射率绝对值,采用同样的实验系统,入射光经过没有镀金膜的等边棱镜得到的反射光谱图作为参考光谱,如图 5b所示。实际上实验系统去除金膜后无法产生SPR效应,所以参考光谱图也即是光源(卤素灯)的反射光谱图,仿真中未能考虑光源光谱特性这一因素,但是实验中光源光谱特性对实验数据有决定性的影响。将图 5a中4条曲线依次与图 5b中参考光谱做除法,可以得到归一化的SPR反射率曲线,如图 5c所示。从图 5c中可以清晰地看出, 4条曲线在波长400nm附近都出现了一个较强的吸收峰,这个吸收峰的起因是因为金膜的本征吸收,这使得在小于400nm区域很难获得高质量的数据;同时由于光谱仪的相应范围为200nm~1100nm及其在红外区域的较低信噪比,使得波长大于950nm区域的SPR测量也受到限制[21]。从图 5c中400nm~950nm区域对不同折射率下的共振波长进行数据提取,对灵敏度曲线进行二次多项式曲线拟合,绘制灵敏度曲线如图 5d所示。灵敏度拟合公式y=141152.6-211380.92x+79469.88x2,可决系数R2=0.9975。计算得出传感器的灵敏度可达4808.94nm/RIU,与理论分析值(4151.26nm/RIU)基本一致。
Figure 5. a—reflectance spectrum with different refractive index of solution b—reference spectrum c—normalized SPR curve d—sensitivity curve measured by experiment
实验数据拟合后,4种不同折射率的溶液对应共振波长以及灵敏度值与仿真理论值存在的偏差,可作如下分析:光线在入射到Au膜的同时,也会加热待测液体,进而改变待测液体的折射率,造成实验误差。后期实验中从折射率-温度交叉敏感问题出发,探讨温度对液体折射率以及共振波长的具体影响,并针对性的制定温度补偿方案。在此基础上,将可以对灵敏度曲线进一步的误差校准。对误差校准后,可以尽量选取折射率差值更为密集的待测液体,以此来获取更为密集的共振波长,得到更加精准的灵敏度曲线。然后将连续的灵敏度曲线数值离散化,并将这些数值存储于单片机数据表。在之后的实际检测中,只需要输入待测溶液的共振波长,数据表将会输出与其匹配的折射率值。
基于SPR光谱分析的液体折射率计
A liquid refractive meter based on surface plasma resonance spectrum analysis
-
摘要: 为了更好地测量液体折射率,提出了一种基于表面等离子共振波长测量液体折射率的方法,采用Kretschman结构建立了模型,进行了软件仿真,并搭建实验平台进行了实验研究,分析了实验和理论之间的误差来源。结果表明,当折射率在1.33RIU~1.36RIU的范围内变化时,表面等离子共振吸收峰随液体样品折射率的变化产生了频移,其灵敏度可达4808.94nm/RIU。该方法可以准确测量液体的折射率,且系统结构简单,具有较高的灵敏度。Abstract: In order to measure refractive index of liquid more accurately, one method based on surface plasma resonance wavelength was proposed. The model was built by using Kretschman structure and software simulation was carried out. The experimental platform was set up and the experimental research was carried out. The error between experimental and theoretical results was analyzed. The results show that, when the refractive index changes within the range of 1.33RIU~1.36RIU, the absorption peak of surface plasma resonance produces a frequency shift with the change of refractive index of liquid sample. And its sensitivity is up to 4808.94nm/RIU. Refractive index of liquid can be measured accurately with the method and the system has simple structure and high sensitivity.
-
Key words:
- sensor technique /
- resonant wavelength /
- surface plasma resonance /
- sensitivity
-
-
[1] SZUNERITS S, MAALOULI N, WIJAYA E, et al. Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces[J]. Analytical and Bioanalytical Chemistry, 2013, 405(5):1435-1443. doi: 10.1007/s00216-012-6624-0 [2] ZENG S, BAILLARGEAT D, HO H P, et al. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications[J]. Chemical Society Reviews, 2014, 43(10):3426-3452. doi: 10.1039/c3cs60479a [3] SITU C, MOONEY M H, ELLIOTT C T, et al. Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis[J]. TrAC Trends in Analytical Chemistry, 2010, 29(11):1305-1315. doi: 10.1016/j.trac.2010.09.003 [4] WU M, CHEN Sh, CHEN Y, et al. Wavelength switchable graphene Q-switched fiber laser with cascaded fiber Bragg gratings[J]. Optics Communications, 2016, 368:81-85. doi: 10.1016/j.optcom.2016.01.069 [5] HU C Y, ZHONG J G, GAO Y J, et al. The refractive index measurement of bio-film based on digital holographic microscopy[J]. Journal of Optoelectronics·Laser, 2010, 21(1):66-69(in Chinese). [6] SCHUSTER T, HERSCHEL R, NEUMANN N, et al. Miniaturized long-period fiber grating assisted surface plasmon resonance sensor[J]. Journal of Lightwave Technology, 2012, 30(8):1003-1008. doi: 10.1109/JLT.2011.2166756 [7] LI Y, LIU X, LIN Zh. Recent developments and applications of surface plasmon resonance biosensors for the detection of mycotoxins in foodstuffs[J]. Food Chemistry, 2012, 132(3):1549-1554. doi: 10.1016/j.foodchem.2011.10.109 [8] KRETSCHMANN E, RAETHER H. Notizen:radiative decay of non radiative surface plasmons excited by light[J]. Zeitschrift für Naturforschung, 1968, A23(12):2135-2136. [9] SHARMA A K, GUPTA B D. Absorption-based fiber optic surface plasmon resonance sensor:a theoretical evaluation[J]. Sensors and Actuators, 2004, B100(3):423-431. [10] OTTO A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection[J]. Zeitschrift für Physik A Hadrons & Nuclei, 1968, 216(4):398-410. [11] ZHANG W J, SUN L G, LIN F J, et al. Surface plasmon wave application in microwave modulator induced by switchable metamaterial[J]. Microwave and Optical Technology Letters, 2016, 58(2):261-263. doi: 10.1002/mop.v58.2 [12] LIU Ch, WANG F M, ZHENG Sh J, et al. Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor[J]. Journal of Modern Optics, 2016, 63(12):1189-1195. doi: 10.1080/09500340.2015.1135257 [13] ZHOU X L, CHEN K, LI L, et al. Angle modulated surface plasmon resonance spectrometer for refractive index sensing with enhanced detection resolution[J]. Optics Communications, 2017, 382:610-614. doi: 10.1016/j.optcom.2016.08.030 [14] CHAI Zh, HU X Y, YANG H, et al. All-optical tunable on-chip plasmon-induced transparency based on two surface-plasmon-polaritons absorption[J]. Applied Physics Letters, 2016, 108(15):151104. doi: 10.1063/1.4946763 [15] LIU Zh H, WEI Y, ZHANG Y, et al. Compact distributed fiber SPR sensor based on TDM and WDM technology[J]. Optics express, 2015, 23(18):24004-24012. doi: 10.1364/OE.23.024004 [16] PATNAIK A, SENTHILNATHAN K, JHA R. Graphene-based conducting metal oxide coated D-shaped optical fiber SPR sensor[J]. IEEE Photonics Technology Letters, 2015, 27(23):2437-2440. doi: 10.1109/LPT.2015.2467189 [17] TAN X X, WANG G J, WANG Zh B, et al. Opened suspended core fiber chip based on surface plasma resonance enhancement mechanism[J]. Laser Technology, 2016, 40(2):209-212(in Chinese). [18] WANG Zh G, YIN L, LIN Ch Y, et al. Sensitivity optimization of bimetallic film surface plasmon resonace sensor[J]. Laser Technology, 2017, 43(3):328-328(in Chinese). [19] DU W, ZHAO F. Silicon carbide based surface plasmon resonance waveguide sensor with a bimetallic layer for improved sensitivity[J]. Materials Letters, 2017, 186(1):224-226. [20] LIN E H, TSAI W S, LEE K L, et al. Enhancing angular sensitivity of plasmonic nanostructures using mode transition in hexagonal gold nanohole arrays[J]. Sensors and Actuators, 2017, B241(4):800-805. [21] HUANG Y. Research on refractive index measurement system based on SPR using wavelength modulation[D]. Harbin: Heilongjiang University, 2012: 82-84(in Chinese).