Analysis of the influence of pulse width and repetition frequency on damage threshold of HgCdTe detector
-
摘要: 为了研究脉宽及重频对HgCdTe探测器损伤阈值影响,采用有限元法对HgCdTe红外探测器进行2维建模,以及激光辐照探测器温度场的仿真,得到了波段内外脉宽从10ns~1000ns的单脉冲激光损伤阈值。由于采用实验测定所有脉宽激光损伤阈值的办法不现实,故通过仿真计算,给出了从ns~μs量级不同激光脉宽的单脉冲探测器损伤阈值公式。结果表明,波段外单脉冲损伤阈值为9MW/cm2~0.9MW/cm2,波段内为150MW/cm2~15MW/cm2,并且探测器单脉冲损伤阈值与激光脉冲宽度呈负指数关系;当采用重频激光辐照探测器时,在相同的重复频率下,因长脉冲激光比窄脉冲宽激的脉冲间隔小,故长脉冲激光辐照时更容易出现温度积累效应,从而出现大面积损伤。这为进一步研究探测器的热应力场热弹性波和激光防护等提供了重要的理论分析依据。Abstract: In order to study the influence of pulse width and repetition frequency on the damage threshold of HgCdTe detector, finite element method was used to build 2-D model of HgCdTe infrared detector and the temperature field of laser irradiation detector was simulated. Damage threshold of single pulse laser of off-band and in-band was obtained from the range of 10ns to 1000ns. Measurement of damage threshold of all pulse width was hard. After simulation and calculation, the damage threshold formula from the range of 10ns to 1000ns was concluded. The results show that, single pulse laser damage threshold of off-band laser is 9MW/cm2~0.9MW/cm2, and 150MW/cm2~15MW/cm2 for in-band laser. And single pulse damage threshold has the negative exponential relationship with laser pulse width. And then, repetition frequency laser was used to irradiate detector with the same repetition frequency. The temperature accumulation effect and damages of large area are more likely to occur under long pulse laser irradiation, because pulse separation of long pulse laser is smaller than narrow pulse laser. The research is useful for studying stress field distribution、thermoplastic wave and laser protection.
-
Keywords:
- laser technique /
- damage threshold /
- finite element /
- HgCdTe /
- pulse laser
-
-
Table 1 Thermal parameters of detector material
material density ρ /
(kg·m-3)heat capacity cp /
(J·kg-1·K-1)thermalconductivity κ /
(W·m-1·K-1)CdZnTe 5680 159 0.97 HgCdTe 7600 150 20 In 7310 237.6 82.01 epoxy 1250 1530 0.2 Si 2330 550 250 Table 2 Damage threshold of power density of off-band laser
pulse width
/nspower density/
(MW·cm-2)10 9 20 6.5 30 5.3 40 4.5 50 4 60 3.7 70 3.4 80 3.2 90 3 100 2.85 150 2.35 200 2.1 300 1.65 400 1.41 500 1.3 600 1.15 700 1.06 800 1 900 0.94 1000 0.9 Table 3 Damage threshold of power density of in-band laser
pulse width/ns power density/(MW·cm-2) 10 150 20 107 30 90 40 75.5 50 68 60 61 70 57 80 53 90 50 100 48 150 39 200 34 300 27 400 23.5 500 21 600 19.5 700 18 800 16.5 900 16 1000 15 -
[1] ZHANG F, NIU Y X, LIU N, et al. Research of temperature field and thermal stress field of CCD under laser irradiation[J]. Laser Technology, 2017, 41(3):433-437(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201703025
[2] BARTOLI F, ESTEROWITZ L, KRUER M, et al. Irreversible laser damage in irdetector materials[J]. Applied Optics, 1977, 16(11):2934-2937. DOI: 10.1364/AO.16.002934
[3] JEVITĆ M M, ŠĆEPANOVIĆ M J. Melting and solidification in laser-irradiated HgCdTe[J]. Applied Physics, 1991, A53(4):332-338. DOI: 10.1007/BF00357197
[4] GARG A, KAPOOR A, TRIPATHI K N, et al. Laser induced damage studies in mercury cadmium telluride[J]. Optics & Laser Technology, 2007, 39(7):1319-1327. http://www.sciencedirect.com/science/article/pii/S0030399206002398
[5] GARG A, KAPOOR A, TRIPATHI K N, et al. Comparative study of evolution of laser damage in HgCdTe, CdTe, and CdZnTe with nanosecond 1.06μm wavelength multiple pulses[J]. Proceedings of the SPIE, 2004, 5273:122-128. DOI: 10.1117/12.524235
[6] JIANG Zh P, LIANG T J, LU Q Sh, et al. Heat effect calculations of PC type HgCdTe detectors when irradiated by laser[J]. Applied Laser, 1995, 15(4):155-156(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTOTAL-YYJG504.003.htm
[7] LIX Q, CHENG X A, WANG R, et al. Experimental study on the response of HgCdTe(PC) detector irradiated by laser[J]. High Power Laser & Particle Beams, 2003, 15(1):40-44(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-qjgy200301011.htm
[8] ZHANG Y Y, ZHENG R Sh, LIU J S. Analysis of pulsed laser disturbance and damage on satellite-borne detector[J]. Journal of Elec-tronics & Information Technology, 2006, 28(9):1758-1760(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dzkxxk200609052
[9] WANG S W, LI Y, GUO L H, et al. Analysis on the disturbance of CO2 laser to long-wave infrared HgCdTe detector[J]. Journal of Infrared & Millimeter Waves, 2010, 29(2):102-104(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-hwyh201002006.htm
[10] WANG T F, TANG W, SHAO J F, et al. Analysis of temperature and damage characteristics of HgCdTe crystal on repetition frequwency of CO2 laser[J]. Chinese Journal of Lasers, 2015, 42(2):0206006(in Chinese). DOI: 10.3788/CJL
[11] LI X L, NIU Ch H, MA M Y, et al. Research on the thermal damage of HgCdTe infrared detector under laser irradiation of 10.6μm wavelength[J]. Infrared Technology, 2016, 38(1):6-9(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-HWJS201601002.htm
[12] WANG Y F, TANG L B. Advances in third-generation HgCdTe devices[J].Electro-Optic Technology Application, 2009, 24(5):17-22(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-GDYG200905005.htm
[13] HAIRSTON A, TOBIN S P, HUTCHINS M, et al. SWIR HgCdTe 256×256 focal plane array technology at BAE systems[J].SPIE, 2006, 6295:62950I. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026765464/
[14] TANG W. Damage mechanism of HgCdTe crystal irradiated by high repetition frequency CO2 laser[D]. Changchun: University of Chinese Academy of Sciences, 2014: 41-42(in Ch inese).
[15] DUAN X F, NIU Y X, ZHANG Ch, et al. Numerical analysis of the temperature field in HgCdTe detector by laser irradiation[J]. Journal of Optoelectronics Laser, 2003, 14(2):191-193(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026187411
[16] CHEN Ch S, LIU A H, SUN G, et al. Analysis of laser damage threshold and morphological changes at the surface of a HgCdTe crystal[J]. Journal of Optics, 2006, A8(1):88-92. http://www.iop.org/EJ/abstract/1464-4258/8/1/014
[17] LI X L, NIU Ch H, MA M Y, et al. Finite element simulation of damage characteristics of CCD detectors under single-laser-pulse irr-adiation[J]. Laser Technology, 2016, 40(5):730-733(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201605023.htm
[18] LEI Zh, ZHANG L W, ZHANG X L, et al. Analysis and simulation of temperature field of focal plane array detector irradiated by Gaussian laser[J]. Laser Technology, 2016, 40(4):516-520(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201604013.htm
[19] LU Q Sh. Laser irradiation effect of semiconductor materials and devices[M].Beijing:National Defense Industry Press, 2015:145-146(in Chinese).
-
期刊类型引用(7)
1. 孙佳鑫,钱传鹏,徐作冬,张检民,叶锡生. 长波量子阱红外探测器激光辐照损伤脉宽效应数值模拟. 激光与光电子学进展. 2024(21): 290-297 . 百度学术
2. 胡蔚敏,王小军,田昌勇,杨晶,刘可,彭钦军. 脉宽对中红外激光带内损伤HgCdTe材料的影响. 强激光与粒子束. 2022(01): 130-137 . 百度学术
3. 王云萍,侯军燕,袁春,康文运,陈安民,张鲁薇. 飞秒激光对多光谱滤波片的损伤阈值研究. 激光技术. 2022(05): 697-701 . 本站查看
4. 李玉瑶,王菲,孙同同. 薄膜激光损伤阈值标定技术. 激光技术. 2021(06): 729-734 . 本站查看
5. 白凤凤,武桂芬. 光学薄膜激光损伤阈值的智能检测研究. 激光杂志. 2020(02): 171-175 . 百度学术
6. 周冰,贺宣,刘贺雄,李秉璇,张炎. 激光辐照非制冷微测辐射热计的理论研究. 激光技术. 2020(04): 411-417 . 本站查看
7. 任晓东,雷武虎,曾凌清,王勇. 基于相对运动的脉冲激光辐照探测器热效应数值分析. 光子学报. 2019(01): 105-111 . 百度学术
其他类型引用(2)