Research on laser irradiation uncooled microbolometer based on finite element analysis
-
摘要: 为了研究非制冷微测辐射热计的激光损伤阈值,根据非制冷微测辐射热计的构造和成像原理,分析了像元温度响应机制,推导出了零偏置下和单次偏置时间内像元受到激光辐照的温度增量计算公式;建立了激光辐照非制冷微测辐射热计的有限元分析模型,结合实际工作条件加载热源载荷进行仿真,模拟了激光造成软损伤的过程。结果表明,激光软损伤阈值可按照零偏置条件下像元温度响应的公式近似计算,其对应的温度偏差不大于3%。该研究为激光压制干扰红外成像系统的损伤阈值计算提供了参考。Abstract: In order to study the laser damage threshold of an uncooled microbolometer, according to the construction and imaging principle of uncooled microbolometer, the temperature response mechanism of the pixel was analyzed, and the formula for calculating the temperature increment of the laser under the zero offset and single offset time was derived. A finite element analysis model of laser irradiated uncooled microbolometer was established. Simulation was carried out by loading the heat source load in combination with actual working conditions. Then the process of soft damage caused by laser was simulated. The conclusion was drawn: laser soft damage threshold approximate calculation of the pixel temperature response under zero bias conditions can be used to meet 3% accuracy. This study provides a reference for the calculation of damage threshold for laser suppression interference infrared imaging systems.
-
Keywords:
- optical devices /
- damage threshold /
- finite element simulation /
- temperature response
-
-
Table 1 Typical parameters of UL01011 320×240 α-Si uncooled microbolometer
parameter value wavelength 8μm~14μm absorption η 80% temperature dynamic range 0K~90K thermal conductance G 1×10-7W/K heat capacity C 4×10-9J/K temperature coefficient of resistance α -0.025K-1 resistance R0 20kΩ bias resistor Rb 20kΩ bias boltage U 0.5V~3.3V Table 2 Parameters of simulation 1, 2
No. P0/W P2/(W·mm-3) ω/(rad·s-1) 1 1.6×10-6 5 0 2 7.8×10-5 10 100 Table 3 Parameters of simulation 3, 4
No. P0/W P2/(W·mm-3) ω/(rad·s-1) 3 0 0 0 4 3.4×10-6 2.5 0 Table 4 Effective simulation parameters of laser soft damage caused by laser
No. Te/K P2/(W·mm-3) ω/(rad·s-1) P0/W 5 380.69 6.3 0 1.0×10-5 6 386.32 15 50 2.5×10-5 7 382.45 27 100 4.2×10-5 -
[1] WOOD R A. Uncooled thermal imaging with monolithic silicon focal planes[J].Proceedings of the SPIE, 1993, 2020:322-329. DOI: 10.1117/12.160553
[2] YU X J, ZHENG Y Ch, GUO Ch L, et al. Analysis of infrared detectability hypersonic vehicles under different background[J]. Laser Technology, 2018, 42(5): 627-632(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgjs201805009
[3] SUN Ch W, LU Q Sh, FAN Zh X, et al. Laser irradiation effect[M]. Beijing: National Defense Industry Press, 2002:7-12(in Ch-inese).
[4] KONG L B, YI X J, WANG D H, et al. Development of 320×240 long-wave non-cooling microbolometer infrared thermal imager[J].Acta Photonics Sinica, 2002, 31(5):85-89(in Chinese).
[5] FIEQUE B, TISSOT J L, TROUILLEAU C, et al. Uncooled microbolometer detector: Recent developments at ULIS[J]. Opto-Electronics Review, 2006, 14(3):187-191. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ023736876/
[6] SUN L J. Research on performance and signal processing circuit of microbolometer array[D]. Nanjing: Nanjing University of Science and Technology, 2008: 16-36(in Chinese).
[7] LENG Y P, LV J, ZHOU Y, et al. Research on non-uniformity and on-chip correction circuit of focal plane array of microbolometer[J]. Infrared, 2010, 31(12):7-11(in Chinese).
[8] YANG F B. Infrared physics and technology[M]. Beijing: Publishing House of Electronics Industry, 2014:89-103(in Chinese).
[9] ZHENG Y L, HU Y H, ZHAO N X, et al. Analysis of the influence of pulse width and repetition frequency on damage threshold of HgCdTe detector[J]. Laser Technology, 2018, 42(2): 265-270(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201802024
[10] BI J, CHEN G B, JIN G Y, et al. Analytical modelling of annular millisecond laser-induced damage in silicon[J]. Lasers in Engineering (Old City Publishing), 2014, 29(3): 175-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4a47fcca63e7d009de76aff4ce2fabdf
[11] CHEN Y, LU J, NI X, et al. Plastic penetration during laser heating of a metal plate[J]. Journal of Materials Processing Technology, 2008, 205(1/3): 9-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ec534736a84a8bb3654841263ee87fd1
[12] QIN Y, CHEN Y, NI X, et al. Axisymmetric numerical simulation of plastic damage in aluminum alloy induced by long pulsed laser[J]. Optics and Lasers in Engineering, 2010, 48(3): 361-367. DOI: 10.1016/j.optlaseng.2009.10.006
[13] ZHANG J J. Research on imaging system of focal plane array of microbolometer[D]. Nanjing: Nanjing University of Science and Technology, 2006: 9-17(in Chinese).
[14] RADFORD W A, MURPHY D, RAY M, et al. 320×240 silicon microbolometer uncooled IR FPAs with on-chip offset correction[J]. Proceedings of the SPIE, 1996, 2746:82-92. DOI: 10.1117/12.243062
[15] TISSOT J L, CHATARD J P, FIEQUE B, et al. High performance and low thermal time constant amorphous silicon based on 320×240 uncooled microbolometer IRFPA[J]. Proceedings of the SPIE, 2004, 5640:94-99. DOI: 10.1117/12.579876