-
随着抽运冲程数N的增加,抽运结构的失调灵敏度和所需要的加工的精度也是必须要考虑的。例如,所成型的柱面棱镜对可能不是绝对的正交,或者柱面棱镜的界面不能够正交于对称轴,而这些失调都将会引起在薄片中心光斑重叠的偏差。因此,选择具有逆向光束的抽运传播的结构则可以得到很大的补偿, 例如本文中所设计的36冲程的结构。但是,抽运吸收效率则是更需要考虑的,因为随着抽运冲程数的不断增加,光学抽运吸收效率的增量其实也在不断地放缓,所以有必要来对抽运效率效率进行模拟和计算,从而来选择最佳的抽运冲程数。
以薄片激光器Yb:YAG晶体为例,晶体的吸收系效率是由晶体的特性(厚度、大小、掺杂浓度、吸收系数)所决定的。而本文中所计算用的Yb:YAG晶体结构Yb掺杂原子数分数为0.1、厚度0.3mm;通过分光光度计所测量计算的吸收系数为9.75cm-1[17]。利用比尔吸收公式和不同吸收冲程结构的推导公式可以计算不同吸收冲程的吸收效率为:
$ P = PR\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right] $
(1) $ \left\{ \begin{array}{l} {P_1} = P{R_1}\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right]\\ {P_1}^\prime = P{R_1}\exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right) \end{array} \right. $
(2) $ \left\{ \begin{array}{l} {P_2} = P{R_1}{R_3}\exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right) \times \\ \;\;\;\;\;\;\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right]\\ {P_2}^\prime = P{R_1}{R_3}\exp \left( { - \frac{{2\alpha L}}{{\cos \theta }}} \right) \end{array} \right. $
(3) $ \begin{array}{l} \;\;\;\;{P_3} = {P_2}^\prime {R_1}{R_2}{R_1}\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right] = \\ P{R_1}{R_3}{R_1}{R_2}{R_1}\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right]\exp \left( { - \frac{{2\alpha L}}{{\cos \theta }}} \right){\rm{ = }}\\ \;\;\;\;P{R_1}^3{R_3}{R_2}\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right]\exp \left( { - \frac{{2\alpha L}}{{\cos \theta }}} \right) \end{array} $
(4) $ \begin{array}{l} \eta = \frac{{{P_1} + {P_2} + {P_3} + \cdots }}{P} = R\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right] + \\ \;\;\;\;\;\;{R^2}\exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right] + \\ \;\;\;\;\;\;{R^5}\exp \left( { - \frac{{2\alpha L}}{{\cos \theta }}} \right)\left[ {1 - \exp \left( { - \frac{{\alpha L}}{{\cos \theta }}} \right)} \right] + \cdots \end{array} $
(5) 式中,R为器件反射率,R1, R2, R3分别为非球面、柱面棱镜和晶体后表面的反射率;P为抽运功率;P1, P2, …为不同冲程下的吸收功率;P1′,P2′为第1、2次吸收后剩余的抽运功率;α为吸收系数;θ为不同的入射角;L为薄片掺杂厚度。
为了方便模拟计算,则认定非球面、柱面棱镜和晶体后表面的反射率都为99.5%。图 7a为24冲程抽运吸收结构3-D图,从图中可以看到:不同的角度和不同的厚度都会引起吸收效率的改变,因此本文中所计算的不同结构的吸收效率都是以20°入射、厚度为300μm来进行的。如图 7b显示24冲程的吸收效率为95.1%(不考虑晶面的散射损耗和晶体的量子亏损);36冲程的吸收效率为98.7%,从36冲程以后吸收效率的斜率增加量趋于平缓。这也解释了为什么在本文中没有进一步设计趋于100冲程以上的抽运结构。通过比较,在中高端高能薄片激光器抽运结构设计中,36冲程的抽运设计则具有更高的性价比。
高冲程薄片激光器抽运结构的设计
Design of multipass pump schemes for thin disk lasers
-
摘要: 为了实现薄片激光器高吸收转换效率的目的,采用多次抽运吸收的方式,结合光斑离轴非对称反射抛物面和光斑对称分布非球面的抽运结构,提出了一种可以提高非球面光束分布占空比的高冲程抽运的新方法。设计了多种不同抽运冲程的结构,使用ZEMAX模拟验证了24冲程抽运时的光路分布和光斑位置图,通过比尔吸收定律理论计算了不同抽运冲程下薄片晶体对抽运光的吸收效率。结果表明,所设计的24冲程、36冲程、40冲程和80冲程的抽运结构,其中36冲程的吸收效率的性价比最高。该研究对高功率、高冲程、小体积的抽运结构设计具有指导作用。Abstract: In order to achieve high absorption and conversion efficiency of thin disk lasers, the method of multiple pumping absorptions was adopted. Combining with the pumping structure of light spot asymmetric parabolic surface and light spot symmetrical aspheric surface, a new method of high pumping passing was proposed to improve the duty ratio of aspheric beam distribution. The multipass pumping structure was designed. The optical path distribution and spot position diagram of 24 passes pumping schemes were simulated by using ZEMAX. Absorption efficiency of thin disk crystal on pump light with different pumping passes was calculated theoretically according to Bill's absorption law. The results show that among the designed pump structures of 24 passes, 36 passes, 40 passes and 80 passes schemes, the absorption efficiency of 36 passes pumping scheme is the most cost-effective. The research has guiding function for the design of small multi-pass pumping structures with high power.
-
Key words:
- optical design /
- thin-disk laser /
- pump scheme /
- absorption efficiency /
- pump pass
-
-
[1] SUMIDA D S, FAN T Y. Effect of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media[J]. Optics Letters, 1994, 19(1):1343-1345. [2] BRAUCH U, GIESEN A, BRAUCH U, et al. Multi-watt diode-pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053nm[J]. Optics Letters, 1995, 20(7):713-715. doi: 10.1364/OL.20.000713 [3] KIM H S, YANG J M. Dependence of the temperature of a Yb:YAG disk laser crystalon the pump laser's spot size and the disk's thickness[J]. Applied Optics, 2009, 55(4):1425-1429. [4] JOHNSON L F, GEUSIC J E, van UITERT L G, et al. Coherent oscillators from Tm3+Ho3+Yb3+ and Er3+ ions in YAG[J]. Applied Physics Letters, 1965, 7(5):127-130. doi: 10.1063/1.1754339 [5] REINBERG A R, RISENBERG L A, BROWN R M, et al. GaAs:Si LED pumped Yb doped YAG laser[J]. Applied Physics Letters, 1971, 19(1):11-13. doi: 10.1063/1.1653723 [6] LIU Q, GONG M L, LU F, et al. Efficient corner pumped Yb:YAG/YAG composite[J]. Applied Optics, 2006, 45(16):3806-3810(in Chinese). doi: 10.1364/AO.45.003806 [7] GIESEN A, HUGEL H, GEUSIC J E, et al. Progress towards high-power high-brightness neodymium-based thin-disk lasers[J]. The International Society for Optical engineering, 2004, 28(1):305-344. [8] SCHUHMANN W, HÄNSCH K, KIRCH T, et al. Thin-disk laser pump schemes for large number of passes and moderate pump source quality[J]. Applied Optics, 2015, 32(54):1559-1568. [9] SONG X. Design and experiment research of resonators for high-power disk laser[D]. Wuhan: Huazhong University of Science and Technology, 2012: 30-42(in Chinese). [10] DUAN X B. Analysis of the thermal lens effect on Yb: YAG thin disk laser crystal[D].Wuhan: Huazhong University of Science and Technology, 2011: 20-34(in Chinese). [11] WANG C H. Design and experiment of multi-pass pump system for Yb:YAG thin disk laser[J].High Power and Particle Beams, 2010, 37(11):2795-2798(in Chinese). [12] ZHOU X. Continuous-wave and pulse output performances for Yb: YAG thin disk laser[D]. Harbin: Harbin Institute of Technology, 2012: 38-40(in Chinese). [13] JAVADI-DASHCASAN M, HAJIESMAEILBAIGI F, RAZZAGHIET H, et al. Optimizing the Yb:YAG thin disk laser design parameters[J]. Optics Communications, 2008, 281(18):4753-4757. doi: 10.1016/j.optcom.2008.05.055 [14] VOSS A, WEICHELT B, AHMED M A, et al. Enhanced performance of the thin-disk lasers by pumping into the zero-phonon line[J]. Optics Letters, 2012, 47(15):254-259. [15] GIESEN A, HUGEL H, GEUSIC J E, et al. Progress towards high-power high-brightness neodymium-based thin-disk lasers[J]. The International Society for Optical Engineering, 2004, 28(1):305-344. [16] MA Y, WANG Ch H, WANG W M, et al. 16-pass pumped micro-channel cooled Yb:YAG thin disk lasers[J]. Laser Technology, 2011, 35(1):82-85(in Chinese). [17] WANG X D. Research on diode pumped thin disk laser[D]. Changchun: Changchun University of Science and Technology, 2016: 7-21(in Chinese).