-
实验中以6.0mm厚5183铝合金试板为研究对象,试板尺寸为100.0mm×150.0mm×6.0mm,采用WDW-200E微机控制电子式万能试验机测得其抗拉强度为307MPa,化学成分含量如表 1所示。实验中对材料进行化学除油、机械去氧化皮处理,并置于干燥箱中干燥。
Table 1. Chemical composition (mass fraction) of 5183 aluminum alloy
material Si Fe Cu Mn Mg Cr Zn Ti Al 5183 0.0040 0.0040 0.0010 0.0040~0.0100 0.0080~0.0120 0.0005~0.0025 0.0025 0.0015 balance -
传统的激光摆动焊接,准直光束通过单轴振镜摆动,经过聚焦镜聚焦的光斑又与焊接头配合相对于工件移动,形成具有一定振幅、频率和偏移量的焊缝;而2轴振镜系统的摆动焊接则是通过控制系统形成一条摆动焊缝,需要较高的成本[12]。这些都阻碍了激光摆动焊接法的应用。
相对于传统摆动焊接模式,本文中采用的双楔形镜旋转D50激光摆动焊接(以下简称激光摆动焊接,如图 1所示),其焦点处光斑直径为0.4mm,通过安装于准直镜和聚焦镜之间的摆动模块,使聚焦光斑在焊接头移动的情况下产生螺旋线式的焊缝[13]。当聚焦焦距相同时,扭转角度越大,则摆动幅度越大;扭转角度相同时,聚焦焦距越大,则摆动幅度越大[14]。这就给激光摆动焊接的应用提供了良好的基础。激光摆动焊接头能提供光束平面上x, y两个方向的运动合成,以此得到5种激光摆动下的扫描模式,分别为顺时针圆(clockwise,CW)、逆时针圆(counter-clockwise,CCW)、直线、数字8及无穷大。并且,每种扫描形式下可提供的宽扫描振幅(0.0mm~3.0mm)和扫描频率(0Hz~300Hz)。
-
试验中所用激光器为IPG公司生产的型号为YLS-10000的光纤激光器,其最大输出功率为10.0kW,输出模式为TEM00,连续输出,激光波长为1070nm,采用芯径为0.2mm光纤进行传输。
焊接机器人为KUKA KR 60 HA六轴机器人,其额定负载60kg,重复精度不大于0.05mm,最大作用范围2033mm。焊接过程中通过机器人夹持焊接头来控制激光的运动轨迹。
-
实验前期,确定优化的焊接参量为:激光功率P=5000W,焊接速率vweld=1.8m/min,离焦量Δf=0mm。实验过程中采用高纯氩气(99.999%)保护,其流量为25L/min。通过依次改变激光摆动焊接参量(扫描模式、扫描频率、扫描振幅)来研究其对铝合金气孔的影响,以此来推断其对强度等性能的影响。并按所得规律选取最优工艺参量进行实验,对实验所得焊缝进行宏观微观金相分析、拉伸试验、焊缝无损检测等手段进行分析。实验中,为防光纤被反射光所损伤,焊接过程中激光束偏移试板的法向约5°。
-
焊后按图 2所示方法取焊缝中心纵截面,观察气孔形貌和分布。取100mm等长度焊接试样沿焊缝纵向采用线切割偏向一侧切开,用水磨砂纸预磨到焊缝中心,进行抛光、腐蚀,用数码相机对焊缝纵截面取照,并对照片进行处理。采用Dino-lite Digital Microscope电子显微镜观察焊缝形貌,XJL-03金相显微镜观察焊缝组织,WDW-200E微机控制电子万能试验机对其进行力学性能测试,拉伸试样示意图如图 3所示。
定义气孔率δ为焊缝截面气孔面积Ap与截面总面积的比值Aw,即:
$ \delta = \frac{{{A_{\rm{p}}}}}{{{A_{\rm{w}}}}} \times 100\% $
(1) 使用ImageJ软件处理自动计算焊缝截面气孔率,软件处理效果如图 4所示。实验中均用此方法来定量测量并比较焊缝气孔率。
6.0mm厚5183铝合金激光摆动焊接工艺研究
Laser-weaving welding of 5183 aluminum alloy plate with 6.0mm thickness
-
摘要: 为了解决6.0mm厚5183铝合金激光焊接气孔问题,采用IPG双楔形镜旋转摆动焊接头进行激光平板对接焊,通过改变扫描模式、扫描频率、扫描振幅等摆动焊接参量进行激光焊接试验,研究了激光摆动工艺对厚板铝合金非穿透焊接接头质量的影响规律,找出最优工艺参量并进行了验证试验。结果表明,激光摆动焊接的铝合金焊缝外观形貌显著改善;除直线扫描模式下有少量气孔外,其余4种扫描模式(顺时针圆、逆时针圆、数字8和无穷大)实现基本无气孔;焊缝截面气孔率随着扫描频率和扫描振幅的提高显著减少,当扫描频率大于200Hz和扫描振幅大于2.0mm时,能得到基本无气孔焊缝;6.0mm厚铝合金对接最优工艺参量为无穷大扫描模式,扫描频率300Hz,扫描振幅3.0mm,可得到无气孔、抗拉强度271MPa、为母材强度88%的对接接头。激光摆动焊接法显示出了良好的应用前景。Abstract: In order to solve the problem of laser welding porosity of 5183 aluminum alloy with 6.0mm thickness, laser-weaving welding was carried out by using IPG laser-weaving welding head. The test was carried out by changing scanning mode, scanning frequency, scanning amplitude and so on. The influence of laser-weaving technology on the quality of thick aluminum alloy welding joint was studied, and the optimum process parameters were found and verified. The results show that the appearance of aluminum alloy welds under laser-weaving welding is significantly improved. In addition to the small number of air holes in the linear scanning mode, the porosity of other four scanning modes (clockwise, counter-clockwise, figure 8 and infinity) decreases significantly with the increase of scanning frequency and scanning amplitude. When the scanning frequency is more than 200Hz and scanning amplitude is more than 2.0mm, no porosity weld can be obtained. Aluminum alloy with 6.0mm thickness can be processed as the butt joint with no porosity, tensile strength of 271MPa and base metal strength of 88%, under the best process parameters of scanning mode infinity, scanning frequency of 300Hz, scanning amplitude of 3.0mm. The laser-weaving welding shows a good prospect.
-
Key words:
- laser technique /
- laser-weaving welding /
- aluminum alloy /
- porosity /
- weld strength
-
Figure 5. Longitudinal section of the weld in different scanning modes
a—CW scanning mode and porosity 0.7% b—CCW scanning mode and porosity 1.1% c—figure 8 scanning mode and porosity 0.6% d—linear scanning mode and porosity 3.2% e—infinity scanning mode and porosity 0.5% f—single laser scanning mode and porosity 8.6%
Table 1. Chemical composition (mass fraction) of 5183 aluminum alloy
material Si Fe Cu Mn Mg Cr Zn Ti Al 5183 0.0040 0.0040 0.0010 0.0040~0.0100 0.0080~0.0120 0.0005~0.0025 0.0025 0.0015 balance -
[1] CHEN K, XIAO R Sh, ZUO T Ch, et al. New advances in laser welding of high strength aluminum alloy[J]. Applied Laser, 2002, 22(2):206-208(in Chinese). [2] LI Sh, WANG J, WANG Ch M, et al. Study on pore defects of aluminum alloy in laser MIG composite welding[J]. Applied Laser, 2013, 33(6):595-600(in Chinese). doi: 10.3788/AL [3] YU Y, WANG C, HU X, et al. Porosity in fiber laser formation of 5A06 aluminum alloy[J]. Mechanical Science and Technology, 2010, 24(5):1077-1082. doi: 10.1007/s12206-010-0309-4 [4] DEVINCENT S M, DEVLETAIN J H, GEDEON S A. Weld properties of the newly developed 2519-T87 aluminum armor alloy[J]. Welding Journal, 1988, 22(7):33-43. [5] TSUKAMOTO S, KAWAGUCHI I, ARAKANE G, et al. Suppression of porosity using pulse modulation of laser power in 20kW CO2 laser welding[C]//20th International Congress on ICALEO 2001. Orlando, USA: Laser Institute of America (LIA), 2001, C: 400-408. [6] ZHAO L, ZHANG X D, CHEN W Zh, et al. The laser weaving method reduces the tendency of laser welding pores[J]. Transactions of the China Welding Institution, 2004, 25(1):29-33(in Chinese). [7] BAO G, PENG Y, CHEN W Zh, et al. Study on laser-weaving welding of ultra fine grain steel[J]. Applied Laser, 2002, 22(2):203-205(in Chinese). [8] LEI Zh L, LI Y, CHEN Y B, et al. Effect of double beam laser beam welding on the porosity of aluminum alloy[J]. Transactions of the China Welding Institution, 2013, 34(2):40-44(in Chinese). [9] WANG J. Study on the technology and plasma behaviour during the fiber laser and laser hybrid welding of aluminium alloy[D]. Wuhan: Huazhong University of Science and Technology, 2012: 1-12(in Chinese). [10] LUO H, HU L J, HUANG Sh H, et al. Laser welding of aluminum alloys[J]. Laser Technology, 1998, 22(2):94-98(in Chinese). [11] WANG W, XU G Y, WANG X Y, et al. Porous suppression technology of 1420 Al-Li alloy laser welding[J]. Transactions of the China Welding Institution, 2008, 29(2):5-7(in Chinese). [12] ZHANG D W, ZHANG H, LIU J, et al. Experiment study of aluminum alloy continuous-pulsed laser welding process[J]. Laser Technology, 2012, 36(4):453-458(in Chinese). [13] MATSUNAWA A, SETO N, KIM J D, et al. Observation of keyhole and molten pool behavior in high power laser welding[J]. Selective Transactions of the Joining and Welding Research Institute, 2001, 30(1):13-27. [14] JIANG Zh W, GONG Sh Zh, WANG Q H. Study on the tracking control technology of dual-beam laser welding[J]. Laser Technology, 2013, 37(1):1-5(in Chinese). [15] LIU J C, SHENG C L. Highlights in the application of new aluminum alloy[J]. Chinese Journal of Rare Metals, 2011, 35(6):812-817. [16] ZHANG H G, JIN X Zh, CHEN G Y, et al. Study on the burning loss of magnesium element in fiber laser welding aluminium alloy 5052[J]. Laser Technology, 2012, 36(6):713-718(in Chinese). [17] ZHANG X D, CHEN W Z. Improvement of weld quality using a weaving beam in laser welding[J]. Journal of Materials Science & Technology, 2004, 20(5):633-636. [18] KONG X F, LI F, LV J X, et al. Fiber laser welding of 5083 aluminium alloy with fibller wire[J]. Chinese Journal of Lasers, 2014, 41(10):1003007(in Chinese). doi: 10.3788/CJL [19] ZUO T Ch.Laser processing of high strength aluminum alloy[M]. Beijing:National Defense Industry Press, 2008:3-28(in Chinese).