-
图 2是激光解不同质量分数w的钛酸四丁酯改性聚硅氧烷制备陶瓷涂层的SEM照片。可以看出,钛酸四丁酯的质量分数对激光裂解钛酸四丁酯改性聚二甲基硅氧烷制备陶瓷涂层的表面形貌有很大影响。当钛酸四丁酯的质量分数为0.00时,所制备的陶瓷涂层的表面堆积了大量絮状物,而且存在大量微小孔隙,见图 2a;当钛酸四丁酯质量分数为0.05时,涂层表面的絮状物和微小孔隙基本消失,出现大量的颗粒物,表面较为平整,见图 2b。钛酸四丁酯添加质量分数的不同对所制备陶瓷涂层表面陶瓷涂层表面形貌和颗粒物大小及孔隙都有较大影响,见图 2c~图 2e。
Figure 2. SEM images of ceramic coatings prepared by laser pyrolysis of polydimethylsiloxanes modified by titanyl titanat
图 3是激光裂解质量分数为0.05钛酸四丁酯改性聚二甲基硅氧烷所制备陶瓷涂层不同区域的能谱仪(energy dispersive spectroscopy,EDS)分析。其中区域Ⅰ中特征元素C,O,Si和Ti的相对含量分别为9.27%, 8.98%, 78.79%和2.96%,区域Ⅱ中特征元素C, O, Si和Ti的相对含量分别为9.45%, 9.33%, 77.97%和3.25%。可以看出,不同区域相同元素的相对含量基本接近,其中Ti元素的相对含量均在3%左右,说明Ti元素在涂层表面分布均匀,并未出现添加金属粉末时该元素在涂层表面出现的分散不均问题。
Figure 3. EDS analysis of different areas of ceramic coatings prepared by laser pyrolysis of polydimethylsiloxane modified by butyl titanate(mass fraction w=0.05)
图 4中给出了激光裂解不同质量分数钛酸四丁酯改性聚硅氧烷制备的陶瓷涂层的XRD图。从图 4可以看出,激光裂解钛酸四丁酯改性聚二甲基硅氧烷获得的涂层中存在SiC,TiO2和Fe的衍射峰,说明涂层中含有晶态的β-SiC, TiO2和Fe。其中晶态β-SiC和TiO2的衍射峰是激光裂解钛酸四丁酯改性聚二甲基硅氧烷过程中的新产物引起的,而Fe的衍射峰是由45#钢基体引起的[14]。
Figure 4. XRD patterns of ceramic coatings prepared by laser pyrolysis of polydimethylsiloxanes modified by butyl titanate of different mass fraction
图 4在7.9°附近出现了TiO2-SiO2的弥散衍射峰,说明TiO2-SiO2以非晶态的形式存在。从图中还可以看出,随着钛酸四丁酯质量分数的增加,TiO2, TiO2-SiO2的衍射峰强度也在增强,说明涂层中含钛化合物的含量随钛酸四丁酯质量分数的增加而增加。
图 5是激光裂解钛酸四丁酯改性聚二甲基硅氧烷制备的陶瓷涂层表面特征元素的XPS解叠图谱。可以看出,激光裂解钛酸四丁酯改性聚二甲基硅氧烷制备的陶瓷涂层主要由SiO2, SiC, C6H18OSi2, TiO2和(TiO2)56(SiO2)44以及单质C等物质组成。
Figure 5. Curve-fitted XPS spectra of ceramic coatings prepared by laser pyrolysis of polydimethylsiloxanes modified by butyl titanate
由上述分析可知,除了激光裂解聚二甲基硅氧烷可生成晶态β-SiC、非晶态SiO2和单质C外[14],激光裂解钛酸四丁酯改性聚二甲基硅氧烷还生成了新的陶瓷相TiO2和(TiO2)56(SiO2)44,这些新的陶瓷相由于体积的增加对陶瓷涂层孔隙具有填补作用[9],因此随着钛酸四丁酯质量分数的增大,陶瓷涂层表面变得更为平整,孔隙逐渐减少。
钛酸四丁酯改性聚二甲基硅氧烷在高能连续激光作用下,激光与钛酸四丁酯改性聚二甲基硅氧烷发生非平衡态化学反应。由于聚二甲基硅氧烷中Si—O(422.5kJ/mol)的键能比C—Si(334.7kJ/mol)的键能高,在激光作用下C—Si键首先断裂,生成CH3自由基,在激光粒子的继续作用下,CH3自由基有一部分可以进一步生成碳自由基和H自由基,Si—O键断裂生成Si和O自由基。
$ \begin{align} &\ \ \ \ \ \ \ \ \ \ \ \ {{(\text{Si(C}{{\text{H}}_{\text{3}}}{{)}_{2}}-\text{O}-)}_{n}}+ \\ &\cdot \left( \text{laser}\ \text{particle} \right)\xrightarrow{{}}\cdot \text{C}{{\text{H}}_{3}}+\text{Si}-\text{O}\cdot \text{C} \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \downarrow \text{laser}\ \text{particle}\downarrow \\ &\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{C}+\cdot \text{H}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \cdot \text{Si}+\cdot \text{O} \\ \end{align} $
(1) 这些自由基与自由基之间可能发生下列反应:
$ \begin{array}{l} \;\;\;\; \cdot {\rm{C}}\left( {{\rm{free\;radical}}} \right) + \cdot {\rm{Si}}\left( {{\rm{free\;radical}}} \right) \to {\rm{SiC}}\left( {\rm{s}} \right)\\ \;\; \cdot {\rm{Si}}\left( {{\rm{free\;radical}}} \right) + \cdot {\rm{O}}\left( {{\rm{free\;radical}}} \right) \to {\rm{Si}}{{\rm{O}}_2}\left( {\rm{s}} \right){\rm{ }}\\ \;\;\;\;\; \cdot {\rm{C}}{{\rm{H}}_3}\left( {{\rm{free}}\;{\rm{radical}}} \right) + \cdot {\rm{Si}}\left( {{\rm{free\;radical}}} \right) + {\rm{ }}\\ \;\;\;\;\;\;\;\;\;\; \cdot {\rm{O}}\left( {{\rm{free}}\;{\rm{radical}}} \right) \to {{\rm{C}}_6}{{\rm{H}}_{18}}{\rm{OS}}{{\rm{i}}_2}\left( {\rm{s}} \right)\\ \;\;\;\; \cdot {\rm{C}}\left( {{\rm{free\;radical}}} \right) + \cdot{\rm{O}}\left( {{\rm{free\;radical}}} \right) \to {\rm{CO}}\left( {\rm{g}} \right){\rm{ }}\\ \cdot {\rm{C}}{{\rm{H}}_3}\left( {{\rm{free\;radical}}} \right) + \cdot {\rm{C}}{{\rm{H}}_3}\left( {{\rm{free\;radical}}} \right) \to {{\rm{C}}_2}{{\rm{H}}_6} \uparrow \\ \;\;\;\;\;\;\; \cdot {\rm{CO}}\left( {\rm{g}} \right) + \cdot {\rm{O}}\left( {{\rm{free\;radical}}} \right) \to {\rm{C}}{{\rm{O}}_2}\left( {\rm{g}} \right) \uparrow {\rm{ }}\\ \;\; \cdot {\rm{H}}\left( {{\rm{free\;radical}}} \right) + \cdot {\rm{H}}\left( {{\rm{free\;radical}}} \right) \to {{\rm{H}}_2}\left( {\rm{g}} \right) \uparrow \end{array} $
(2) 而钛酸四丁酯在高能粒子的作用下发生下酯化列反应:
$ \begin{align} &\text{Ti}{{(\text{OC}{{\text{H}}_{2}}-\text{C}{{\text{H}}_{2}}-\text{C}{{\text{H}}_{2}}-\text{C}{{\text{H}}_{3}})}_{4}}\xrightarrow{\text{laser}} \\ &\ \ \ \ \ \ \ \text{Ti}{{\text{O}}_{2}}+2{{\text{H}}_{9}}{{\text{C}}_{4}}-\text{O}-{{\text{C}}_{4}}{{\text{H}}_{9}} \\ \end{align} $
(3) 新生的TiO2与通过自由基反应生成的SiO2发生混融,生成(TiO2)56(SiO2)44。
因此,钛酸四丁酯改性聚二甲基硅氧烷在高能连续激光作用,生成了气态的CO2, CO和H2,固态的SiO2, SiC, C6H18OSi2, TiO2, (TiO2)56(SiO2)44等物质。反应方程式如下:
$ \begin{align} &\text{SiC}\left( \text{crystalline state} \right)+\text{Si}{{\text{O}}_{2}}\left( \text{amorphous state} \right)+\text{ } \\ &\ \ \ {{\left( \text{Ti}{{\text{O}}_{\text{2}}} \right)}_{56}}{{\left( \text{Si}{{\text{O}}_{\text{2}}} \right)}_{44}}\left( \text{amorphous state} \right)\xrightarrow{\text{laser}}\text{Ti}{{\text{O}}_{2}}~ \\ &\left( \text{crystalline state} \right)+{{\text{C}}_{6}}{{\text{H}}_{8}}\text{OS}{{\text{i}}_{2}}+\text{C}{{\text{O}}_{2}}\uparrow +\text{CO}\uparrow +\text{ } \\ &{{\text{H}}_{2}}\uparrow +{{\text{C}}_{2}}{{\text{H}}_{6}}\uparrow {{\left( \text{Si}{{\left( \text{C}{{\text{H}}_{3}} \right)}_{2}}-\text{O}-\right)}_{n}}+\text{Ti}{{\left( \text{O}{{\text{C}}_{4}}{{\text{H}}_{9}} \right)}_{4}} \\ \end{align} $
(4)
激光裂解钛酸酯改性聚硅氧烷制备陶瓷涂层
Ceramic coatings prepared by laser pyrolysis of polysiloxane modified by titanate
-
摘要: 为了解决先驱体转化陶瓷法中金属粉末活性填料在制备陶瓷涂层中分散不均的问题,采用激光裂解钛酸四丁酯改性聚二甲基硅氧烷法在金属基体表面制备陶瓷涂层,通过电子显微镜、X射线衍射和X射线光电子能谱等手段,取得了涂层表面并分析了激光裂解钛酸四丁酯改性聚二甲基硅氧烷生成物的组成与结构。结果表明,钛酸四丁酯添加量的质量分数为0.05时,涂层表面不同区域的Ti相对含量均在3%左右,Ti元素在涂层中分布均匀,钛酸四丁酯改性聚二甲基硅氧烷在激光作用下生成的陶瓷涂层主要由晶态的SiC,TiO2,非晶态SiO2,(TiO2)56(SiO2)44以及C6H18OSi2等组成,激光裂解过程中新生的TiO2,(TiO2)56(SiO2)44等陶瓷相对所制备的陶瓷涂层表面孔隙具有填补作用,使陶瓷涂层表面均匀平整致密,孔隙、缝隙基本消失,解决了金属粉末活性填料的分散问题。Abstract: In order to solve the problem that metallic powder active fillers were easily dispersed nonuniformly while preparing ceramic coatings by polymer derived ceramics method, the ceramic coating was prepared by laser pyrolysis of polydimethylsiloxane modified by butyl titanate. The composition and structure of products were analyzed by scanning electron microscope (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that, while the mass fraction of the addition of butyl titanate is 0.05, the relative content of Ti element in different areas of coatings is about 3% and Ti element disperses uniformly in ceramic coating. Under the action of high energy laser, the ceramic coating generated from the polydimethylsiloxane modified by butyl titanate is composed of crystalline SiC and TiO2, as long as amorphous SiO2, (TiO2)56(SiO2)44 and C6H18OSi2. The formation of new ceramic phase such as TiO2 and (TiO2)56(SiO2)44 can fill the pores and lead to the less porosity of the ceramic coating, and make the coating surface uniform and densified. The study solves the dispersion of active filler of metal powder.
-
Key words:
- materials /
- ceramic coating /
- laser pyrolysis /
- butyl titanate /
- polydimethylsiloxane precursor /
- pyrolysis mechanism
-
-
[1] YANG D, YU Y, ZHAO X, et al. Fabrication of silicon carbide (SiC) coatings from pyrolysis of polycarbosilane/aluminum[J]. Journal of Inorganic and Organometallic Polymers and Materials, 2011, 21(3):534. doi: 10.1007/s10904-011-9481-y [2] WANG Ch, ZHU D M, ZHOU W C, et al. Research progress in ceramic matrix composites fabrication via filler-assisted precursor infiltration and pyrolysis method[J]. Materials Review, 2014, 28(17):145-150(in Chinese). [3] XIAO P, YANG D X, ZHAO X, et al. Novel chemical method to fabricate SiC/Al2O3 ceramic composite coatings on metallic substrates[J]. China Surface Engineering, 2009, 22(6):24-29(in Chinese). [4] WANG K, UNGER J, TORREY J D, et al. Corrosion resistant polymer derived ceramic composite environmental barrier coatings[J]. Journal of the European Ceramic Society, 2014, 34(15):3597-3606. doi: 10.1016/j.jeurceramsoc.2014.05.036 [5] SEO D, JUNG S, LOMBARDO S J, et al. Fabrication and electrical properties of polymer-derived ceramic (PDC) thin films for high-temperature heat flux sensors[J]. Sensors & Actuators, 2011, A165(2):250-255. [6] BARROSO G S, KRENKEL W, MOTZ G. Low thermal conductivity coating system for application up to 1000℃ by simple PDC processing with active and passive fillers[J]. Journal of the European Ceramic Society, 2015, 35(12):3339-3348. doi: 10.1016/j.jeurceramsoc.2015.02.006 [7] YUAN J, LUAN X, RIEDEL R, et al. Preparation and hydrothermal corrosion behavior of Cf/SiCN and Cf/SiHfBCN ceramic matrix composites[J]. Journal of the European Ceramic Society, 2015, 35(12):3329-3337. doi: 10.1016/j.jeurceramsoc.2014.12.009 [8] GOERKE O, FEIKE E, SCHUBERT H. High temperature ceramic matrix composites[M]. Weinheim, Germany:Wiley-VCH Verlag GmbH & Co KGaA, 2006:236-239. [9] QIAO Y L, XUE Y Ch, LIU J, et al. Prolytic ceramization of polymer precursors on metallic surfaces:perspect and prospect[J]. Materials Review, 2016, 30(6):1-6(in Chinese). [10] ERNY T, SEIBOLD M, JARCHOW O, et al. Microstructure development of oxycarbide composites during active-filler-controlled polymer pyrolysis[J]. Journal of the American Ceramic Society, 2010, 76(1):207-213. [11] CAO Sh W, XIE Zh F, WANG J, et al. Research progress in hetero-elements containing SiC ceramic precursors[J]. Polymer Materials Science & Engineering, 2007, 23(3):1-5(in Chinese). [12] MULLER A, GERSTEL P, BUTCHEREIT E, et al. Si/B/C/N/Al precursor-derived ceramics:synthesis, high temperature behaviour and oxidation resistance[J]. Journal of the European Ceramic Society, 2004, 24(12):3409-3417. doi: 10.1016/j.jeurceramsoc.2003.10.018 [13] MOTZ G, HACKER J, ZIEGLER G. Special modified silazanes for coatings, fibers and CMC'S[J]. Ceramic Engineering & Science Proceedings, 2008, 21(4):307-314. [14] XUE Y Ch, QIAO Y L, LIU J, et al. SiOC ceramic coating prepared by laser pyrolysis liquid polydimethylsiloxane[J]. Journal of the Chinese Ceramic Society, 2016, 44(10):1482-1487(in Ch-inese). [15] FRIEDELA T, TRAVITZKYA N, NIEBLINGB F, et al. Fabrication of polymer derived ceramic parts by selective laser curing[J]. Journal of the European Ceramic Society, 2005, 25(2):193-197. [16] PROUST V, BECHELANY M C, GHISLENI R, et al. Polymer-derived Si-C-Ti systems:from titanium nanoparticle-filled polycarbosilanes to dense monolithic multi-phase components with high hardness[J]. Journal of the European Ceramic Society, 2016, 36(15):3671-3679. doi: 10.1016/j.jeurceramsoc.2016.04.023