-
运用时域耦合模理论(coupled-mode theory, CMT)[21-24]进行了谐振腔与波导之间理论上的耦合特性分析,设计了3种带有谐振腔的弯折波导结构。瞬时CMT理论基于输入及输出的电磁场通量平衡的一瞬时微分方程, 在理想传输状况下没有损耗,设在谐振腔内场的振动频率是ω0,振幅是a(t),S+1描述了波导端口P1的电磁波输入能量,S-1,S-2分别描述了波导端口P1和P2的电磁波输出能量。取振幅a(t)时间导数得:
$ \begin{array}{*{20}{c}} {\frac{{{\rm{d}}a\left( t \right)}}{{{\rm{d}}t}} = }\\ {{\rm{j}}{\omega _0}a\left( t \right) - \left( {\frac{1}{{{\tau _0}}} + \frac{1}{{{\tau _1}}} + \frac{1}{{{\tau _2}}}} \right)a\left( t \right) + {K_1}{S_{ + 1}}} \end{array} $
(1) 式中, 1/τ1, 1/τ2为耦合到输入和输出两波导模式振幅衰减率,1/τ0为腔损耗衰减率, K1为耦合系数。相关的外部耦合因子为:
$ {Q_{{\rm{e}},1}} = {\omega _0}{\tau _1}/2 $
(2) $ {Q_{{\rm{e}},2}} = {\omega _0}{\tau _2}/2 $
(3) 谐振腔固有品质因子为:
$ {Q_0} = {\omega _0}{\tau _0}/2 $
(4) 固有品质因子Q0描述了由于谐振腔可向周围结构传输功率泄露而造成的能量固有损耗,外部耦合因子Qe, 1和Qe, 2描述了腔与波导耦合作用时能量的泄露。耦合系数K1依赖于输入波导模式振幅衰减率1/τ1,两个量之间的关系为:
$ {K_1} = \sqrt {2/{\tau _1}} $
(5) $ {S_{ - 1}} = - {S_{ + 1}} + \sqrt {2/{\tau _1}} a\left( t \right) $
(6) $ {S_{ - 2}} = \sqrt {2/{\tau _2}} a\left( t \right) $
(7) 通过波导模式与谐振器模式的强耦合作用辐射效应被削弱,在腔与波导模式强耦合的状况下,耦合模理论为这个概念提供了一种定性描述。按照耦合模理论能获得如下的关系式,端口P1的反射率为:
$ R = {\left| {\frac{{{S_{ - 1}}}}{{{S_{ + 1}}}}} \right|^2} = {\left| {\frac{{ - {\rm{j}}\left( {\omega - {\omega _0}} \right) + \frac{1}{{{\tau _1}}} - \frac{1}{{{\tau _2}}} - \frac{1}{{{\tau _0}}}}}{{{\rm{j}}\left( {\omega - {\omega _0}} \right) + \frac{1}{{{\tau _1}}} + \frac{1}{{{\tau _2}}} + \frac{1}{{{\tau _0}}}}}} \right|^2} $
(8) 式中,ω为腔外频率。端口P2的传输率为:
$ T = {\left| {\frac{{{S_{ - 2}}}}{{{S_{ + 1}}}}} \right|^2} = {\left| {\frac{{\frac{2}{{\sqrt {{\tau _1}{\tau _2}} }}}}{{{\rm{j}}\left( {\omega - {\omega _0}} \right) + \frac{1}{{{\tau _1}}} + \frac{1}{{{\tau _2}}} + \frac{1}{{{\tau _0}}}}}} \right|^2} $
(9) 在一无损耗介质和对称的系统中,1/τ0=0,1/τ1=1/τ2=1/τe=ω0/(2Qe),系统具有100%的传输率,1/τ0≠0时,数值比τe/τ0=Qe/Q0决定最大传输率与最小反射率,得到如下的公式:
$ R = {\left| {\frac{{{Q_{\rm{e}}}/{Q_{\rm{0}}}}}{{2 + {Q_{\rm{e}}}/{Q_{\rm{0}}}}}} \right|^2} $
(10) $ T = {\left| {\frac{2}{{2 + {Q_{\rm{e}}}/{Q_{\rm{0}}}}}} \right|^2} $
(11) 传输损耗率为:
$ L = 1 - T - R $
(12) 图 1中给出传输率、反射率、传输损耗率随Q0/Qe变化的关系图像。很明显,如果谐振器无辐射损耗,在谐振频率上能实现没有反射的完全传输,然而辐射损失是不可避免的,将会减小传输率,通过制作非常大的Q0/Qe,来实现波导模式与谐振腔模式间的强耦合作用,以提高传输率。
具有谐振腔的弯折光子晶体波导特性研究
Study on characteristics of bent photonic crystal waveguides with resonant cavities
-
摘要: 为了研究基于光子晶体波导的高性能滤波器,采用调节谐振腔结构和优化耦合结构等方法,基于耦合模理论,在正方格光子晶体中设计了3种光子晶体弯折波导,并进行了理论分析和仿真验证,利用时域有限差分法取得了3种波导在S波段及C波段上的工作特性数据。结果表明,3种波导在不同波段表现出良好的带阻或带通特性,且其结构截止传输波长和通带传输波长随整体介质柱相对介电常数增加向长波方向移动,介电常数εr每增加0.3,截止传输波长和通带传输波长均增加6nm左右。这一结果对微型光传感器、微型光通信器件、集成光路等方面的设计都是有帮助的。Abstract: In order to study high performance filters based on photonic crystal waveguide, some methods such as adjusting the structures of resonant cavities and optimizing the coupling regions were adopted in the paper. Three kinds of bent photonic crystal waveguides were designed based on the coupled-mode theory in square dielectric rod photonic crystal. After theoretical analysis and experimental verification, the performance characteristics in the S-band and C-band were studied by the time-domain finite-different method. The results show that, 3 kinds of waveguides have good band stop or band pass characteristics at different wavelengths. Cutoff transmission wavelength and passband transmission wavelength shift toward longer wavelengths with the increase of relative dielectric constant of the overall dielectric column. Cutoff wavelength and transmission wavelength are increased by about 6nm with the increase of dielectric constant εr by 0.3. The study has potential value in the designs of micro optical sensors, micro optical communication devices, optical integrated circuits, etc.
-
-
[1] YABLONOVITCH E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20):2059-2062. doi: 10.1103/PhysRevLett.58.2059 [2] SAJEEV J. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486-2489. doi: 10.1103/PhysRevLett.58.2486 [3] HEMANT S D, AMIT K G, VARUN S, et al. Coupling light in photonic crystal waveguides:A review[J]. Photonics and Nanostructures Fundamentals and Applications, 2016, 20(1):41-58. [4] BABA T. Slow light in photonic crystals[J]. Nature Photonics, 2008, 2(8):465-473. doi: 10.1038/nphoton.2008.146 [5] ZHOU J, TIAN H P, YANG D Q, et al. Ultra-broadband and ultra-low-loss photonic crystal with band-flatness waveguide 60 bend obtained based on lattice-shifted optimization[J]. Optics Communications, 2014, 322(1):227-233. [6] YUAN J H, YANG J, SHI D, et al. Design optimization of a low-loss and wide-band sharp 120° waveguide bend in 2-D photonic crystals[J]. Optics Communications, 2016, 367(1):356-363. [7] DANAIE M, ATTARI A R, MIRSALEHI M M, et al. Design of a high efficiency wide-band 60° bend for TE polarization[J]. Photonics and Nanostructures-Fundamentals and Applications, 2008, 6(3):188-193. [8] ROSA L, SAITOH K, KAKIHARA K, et al. Genetic-algorithm assisted design of C-band CROW-miniaturized PCW interleaver[J]. Journal of Lightwave Technology, 2009, 27(14):2678-2687. doi: 10.1109/JLT.2009.2014883 [9] LU M F, YANG Y L, HUANG Y T. Numerical study of transmission improvement in a photonic crystal waveguide bend by mode-matching technique[J]. IEEE Photonics Technology Letters, 2008, 20(24):2114-2116. doi: 10.1109/LPT.2008.2006918 [10] BETTINI P, BOSCOLO S, SPECOGNA R B, et al. Design optimization of waveguide bends in photonic crystals[J]. IEEE Transactions on Magnetics, 2009, 45(3):1630-1633. doi: 10.1109/TMAG.2009.2012761 [11] TEE D C, YU G, SHEE N Z, et al. Structure tuned, high transmission 180° waveguide bend in 2-D planar photonic crystal[J]. IEEE Photonics Technology Letters, 2013, 25(15):1443-1446. doi: 10.1109/LPT.2013.2266893 [12] LIU Y F, LIU B, CHEN J, et al. Study on filtering characteristics based on tooth-shaped photonic crystal waveguide[J]. Laser Technique, 2016, 40(2):237-240(in Chinese). [13] ESPINOLA R, AHMAD R, PIZZUTO F, et al. A study of high-index-contrast 90°waveguide bend structures[J]. Optics Express, 2001, 8(9):517-528. doi: 10.1364/OE.8.000517 [14] PEI H Ch, LI B, DANNER A J, et al. Design and modeling of 2-D photonic crystals based hexagonal triple-nano-ring resonators as biosensors[J]. Microsystem Technologies, 2013, 19(1):53-60. doi: 10.1007/s00542-012-1610-1 [15] POPESCU D, STERIAN P. FDTD analysis of photonic crystals with square and hexagonal symmetry[J]. Journal of Advanced Research in Physics, 2011, 2(2):1-5. [16] CHANG K, LIU Ch Y. Electro-optical channel drop switching in a photonic crystal waveguide-cavity side-coupling system[J]. Optics Communications, 2014, 316(7):10-16. [17] HUANG H, OUYANG Zh B. General method for eliminating wave reflection in 2-D photonic crystal waveguides by introducing extra scatterers based on interference cancellation of waves[J]. Optics Communications, 2016, 370(9):55-59. [18] PILEHVAR E, KAATYZIAN H, DANAIE M. Design of a high-transmission waveguide bend for Kagome photonic crystal lattice[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(19):1914-1917. doi: 10.1016/j.ijleo.2015.05.042 [19] ZHU Zh M, BROWN T G. Full-vectorial finite-difference analysis of microstructured optical fibers[J]. Optics Express, 2002, 10(17):853-864. doi: 10.1364/OE.10.000853 [20] LÜ Sh Y, ZHAO H. Design and research of wavelength division demultiplexer based on slow light waveguides. Laser Technology, 2015, 39(5):617-620(in Chinese). [21] HALL K, LENZ G, DARWISH M A, et al. Subpicosecond gain and index nonlinearities in InGaAsP diode lasers[J]. Optics Communications, 1994, 111(5):589-612. [22] GHAFFARI A, DJAVID M, MONIFI F, et al. Photonic crystal power splitter and wavelength multi/demultiplexer based on directional coupling[J]. Journal of Optics, 2008, A10(7):75203-75209. [23] GHAFFARI A, MONIFI F, DIAVID M, et al. Photonic crystal bends and power splitters based on ring resonators[J]. Optics Communications, 2008, 281(23):5929-5934. doi: 10.1016/j.optcom.2008.09.015 [24] GHAFFARI A, MONIFI F, DIAVID M, et al. Analysis of photonic crystal power splitters with different configurations[J]. Journal of Applied Sciences, 2008, 8(8):1416-1425. doi: 10.3923/jas.2008.1416.1425 [25] DINESH K V, TALABUTTULA S, SELVARAJAN A. Investigation of ring resonators in photonic crystal circuits[J]. Photonics and Nanostructures-Fundamentals and Applications, 2004, 2(3):199-206. [26] GHAFARI A, DJAVID M, MONIFI F, et al. A numeric analysis of photonic crystal tunable add-drop filters based on ring resonators[C]//IEEE LEOS Annual Meeting. New York, USA: IEEE, 2007: 351-352. [27] GOLDBERG M. Stability criteria for finite difference approximations to parabolic systems[J]. Applied Numerical Mathematics, 2000, 33(1/4):509-515. [28] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200. doi: 10.1006/jcph.1994.1159