-
强度、刚度、可靠性和寿命是机械零件设计时应满足的基本要求,设计完成后再进行优化。采用SolidWorks Simulation对照射基体进行优化分析,必须要对照射基体作静态分析。首先,对照射基体进行有限元分析,SolidWorks Simulation与其它计算机辅助工程(computer aided engineering, CAE)分析过程一样,一般包括前处理、求解和后处理[16-17]。
对照射基体模型进行约束、加载后,Simulation使用高级技术将模型的网格划分为有限单元,网格信息如表 1所示。以上工作均完成后,对模型进行当前条件的求解。图 6是发射基体的网格划分图。图 7是von Mise应力分析结果图,最大von Mise应力为606599N/m2,主要集中在安装激光器的基面上,远小于材料的屈服强度。图 8是其应变分析结果图,最大应变为3.27778×10-6。图 9是位移分析结果图,最小综合位移和最大综合位移分别为1×10-30mm和0.000522434mm,变形量相当小,满足精度要求。依据上面的分析可知,此结构设计的安全性和可靠性是完全满足设计要求的。
Table 1. Mesh information
the type of mesh solid mesh Mesher based on the curvature of the grid Jacobi point 4 points maximum unit 17.7404mm minimum unit 3.54809mm the quality of mesh high total number of points 74013 total number of units 41022 maximum height to width ratio 568.18 height to width ratio < 3% 1.51% height to width ratio>10% 63.8% warp unit(Jacobi) 0%
小型激光器冷却部件的结构设计与分析
Structure design and analysis of cooling parts of compact lasers
-
摘要: 为了在限定的包络结构内完成小型激光器冷却部件的设计,并保证激光器和冷却部件的安装精度、发射天线的精度和水箱的散热能力,根据该激光器的技术指标,确定了采用的金属材料和焊接方式,进行了一体化和小型化设计。采用有限元分析软件和SolidWorks软件对冷却部件中的重要零件进行静态分析,以确保其精度和可靠性。最后将加工完成的实物进行温度特性试验、冲击振动特性试验和高低温环境下叠加冲击振动试验。结果表明,冷却部件未出现撕裂、漏液等质量问题;激光器的束散角为2.5mrad,输出能量为86mJ,脉宽为12ns,满足设计要求。该设计稳定可靠,可运用于多种机载激光测距机或指示器。Abstract: In order to complete the design of cooling components within the limited envelope structure of a small laser and guarantee installation accuracy of the laser and cooling parts, the accuracy of transmitting telescope and heat dissipation of water tank, according to the given technical specifications of laser and the determined metal materials and welding methods, the detailed integration and miniaturization design of the cooling parts were carried out. Finite element analysis method and SolidWorks software were used to analyze the static state of the important parts in the cooling parts to ensure its accuracy and reliability. Finally, temperature characteristics test, shock and vibration characteristics test and impact vibration test under high and low temperatures were carried out. The results show that some quality problems, such as tearing and leakage, do not appear in the cooling parts. Beam divergence angle of 2.5mrad, output energy of 86mJ and pulse width of 12ns meet the design requirements. The design is stable and reliable, and can be used in a wide range of airborne laser range finders or indicators.
-
Key words:
- laser technique /
- structure design /
- static analysis /
- heat dissipation /
- integrated design /
- miniaturization
-
Table 1. Mesh information
the type of mesh solid mesh Mesher based on the curvature of the grid Jacobi point 4 points maximum unit 17.7404mm minimum unit 3.54809mm the quality of mesh high total number of points 74013 total number of units 41022 maximum height to width ratio 568.18 height to width ratio < 3% 1.51% height to width ratio>10% 63.8% warp unit(Jacobi) 0% -
[1] MA Q, TIAN Z H, WANG Z F, et al. A theoretical model of high power CSEL based on the thermal-offset-current [J]. Chinese Journal of Luminescence, 2009, 30(4):463-466. [2] CHILLAR J, BUTTERWORTH S, ZEITSCHEL A, et al. High power optically pumped semiconductor lasers[J]. Proceedings of the SPIE, 2004, 5332: 143-150. doi: 10.1117/12.549003 [3] LI X Y, WU Ch S, LI W Sh. Study on the progress of welding science and technology in China[J]. Journal of Mechanical Engineering, 2012, 48(60):19-23(in Chinese). [4] YAN X F. Application and development trend of the vacuum EB welding in airborne equipment in China[J]. Aviation Manufacturing Technology, 2005, 9:90-92(in Chinese). [5] ZHANG Y, JIN G H, JIANG Y, et al. Design of back suspension support structures for large scale dynamic scanning mirrors [J]. Laser Technology, 2016, 40(3):441-446(in Chinese). [6] HAN G Y, ZHANG G L, CAO L H, et al. Opto-mechanical structural design of laser emitting system for SLR[J].Chinese Journal of Scientific Instrument, 2011, 32(7):1669-1674(in Chinese). [7] LI Ch, HE X. Design of lightweight large aperture mirrors and supporting structures [J]. Laser Technology, 2015, 39(3):337-340(in Chinese). [8] PENG Y F, WU D Y, ZHANG Y, et al. Simulation and structure design of a high power laser mirror with self-compensation of thermal distortion[J]. Laser Technology, 2012, 36(1):120-123(in Chinese). [9] TIAN Ch Q, XU H B, CAO H Zh, et al. Cooling technology for high-power solid-state laser[J]. Chinese Journal of Lasers, 2009, 36(7):1686-1689(in Chinese). doi: 10.3788/JCL [10] ZHANG Zh. Study of the micro-channel cooling technology for end-pumped solid state lasers[D]. Harbin: Harbin Institute of Technology, 2008: 14-20(in Chinese). [11] JIANG X Y, ZHENG J G, YAN X W, et al. Structural design of the water cooling system in a high power end cooled Yb:YAG slab laser[J]. Laser Technology, 2011, 35(5):629-631(in Chinese). [12] JIA Ch Y, WANG Ch, LIU W F, et al. Cooling liquid for liquid immersed solid-state laser[J]. Modern Chemical Industry, 2015, 35(10):95-97(in Chinese). [13] LV K P, TANG X J, LIU L, et al. Numerical analysis of the cooling structure of side-pump solid laser[J]. Laser and Infrared, 2016, 46(11):1345-1348(in Chinese). [14] ALFORD W J. High power and good beam quality at 980 nm from a vertical external-cavity surface-emitting laser [J]. Journal of the Optical Society of America, 2002, B19(4):663-666. [15] RICHARDSON D, NILSSON J, CLARKSON W. High power fiber lasers: current status and future perspectives[J]. Journal of the Optical Society of America, 2010, B27(11):63-92. [16] JING H Q, ZHONG L, NI Y X, et al. Design and simulation of a high-efficiency cooling heat-sink structure using fluid-thermodynamics[J]. Journal of Semiconductors, 2015, 36(10):1-6. [17] LI Zh G. Heat transfer and thermal stress study of high power solid laser[D].Beijing: University of Chinese Academy of Science, 2008: 3-8(in Chinese). [18] YANG Ch, ZHAO G, GAO H, et al. Airborne laser with secondary circulating cooling: Chinese: ZL201010052651.7[P]. 2013-11-27(in Chinese). [19] ZHANG G, LI J, PENG X J, et al. Compact repetitive diode-pumped slab lasers without thermoelectric coolers [J]. Laser Technology, 2016, 40(5):625-628(in Chinese).