-
氧元素和碳元素有众多的同位素,所以,CO2有众多的同位素气体,如12C16O2,13C16O2,12C18O2等,对应的输出谱线范围如图 1[14]所示。
Figure 1. Spectral line range of CO2 isotope gas[14]
从图 1中可以发现,CO2存在两种跃迁,0001→1000(Ⅰ波段)和0001→0200(Ⅱ波段),9.3μm(1075cm-1)波长出现在0001→0200波段。3种同位素气体可以产生9.3μm波段跃迁:12C16O2,12C16O18O,12C18O2。在谱线竞争中,小信号增益系数大的谱线在振荡竞争中获胜,产生激光振荡,饱和光强大的产生的激光输出功率高。美国科学家测量了5种同位素气体P(20)跃迁谱线的小信号增益系数和饱和光强,并计算了两个波段的增益系数比[15-16],见表 1。
Table 1. Small signal gain and saturation intensity of P(20) transition line about five kinds of carbon dioxide isotope gases
band parameter 12C16O2 12C18O2 13C16O2 13C18O2 14C16O2 Ⅰ α0/10-2cm-1 1.07 0.3 0.64 0.42 0.55 Is/(W·cm-2) 47 30 38 39 56 Ⅱ α0/10-2cm-1 0.9 0.73 0.26 0.42 0.099 Is/(W·cm-2) 25 39 9 32 -3 measured α0, Ⅰ/α0, Ⅱ 1.2 0.4 2.5 1.0 5.6 calculated KⅠ/KⅡ 1.4 0.5 3.2 1.0 7.1 表 1中,α0为小信号增益系数,K为通过理论计算得到的增益系数,Is为饱和光强。12C16O2的Ⅰ波段的P(20)跃迁谱线为10.6μm,小信号增益系数是Ⅱ波段P(20)跃迁谱线9.55μm的1.2倍,所以,10.6μm谱线比9.55μm谱线更容易产生激光振荡。12C16O2的常规激光输出波长为10.6μm谱线。12C18O2的Ⅱ波段的P(20)谱线小信号增益系数为Ⅰ波段P(20)谱线的2.5倍,所以,12C18O2的Ⅱ波段的P(20)支优先振荡。1982年, FREED等人[15]测量了表 1中5种同位素气体波段Ⅰ和波段Ⅱ中P(J)和R(J)(转动能级的转动量子数J=12, 16, 20, 24, 28)的小信号增益系数α0和饱和光强Is,并计算了α0Is。FREED的测量结果显示,同一波段中,P支谱线大于R支谱线的增益系数,且P支谱线中P(20)支的α0Is最大。激光器的输出功率公式如下[14]:
$ {{P}_{0}}=2{{I}_{\text{s}}}AT\left( \frac{{{\alpha }_{0}}l}{{{L}_{\text{i}}}+T}-1 \right)~ $
(1) 式中,P0为激光器的输出功率,A为增益介质的横截面积,T为激光器输出镜的透过率,α0为激光器的小信号增益系数,l为增益介质的长度,Li为腔内损耗。由(1)式可知,P(20)支谱线输出激光功率最大。
Table 2. Small signal gain and saturation intensity of 12C18O2
band transition α0/10-2cm-1 Is/(W·cm-2) α0 Is/(W·cm-3) Ⅰ P(28) 0.27 22 0.060 P(24) 0.30 24 0.071 P(20) 0.30 30 0.091 P(16) 0.28 24 0.069 P(14) 0.24 22 0.052 R(12) 0.24 23 0.054 R(16) 0.26 27 0.071 R(20) 0.27 29 0.079 R(24) 0.26 22 0.059 R(28) 0.23 20 0.047 Ⅱ P(28) 0.66 30 0.20 P(24) 0.71 34 0.24 P(20) 0.73 39 0.28 P(16) 0.67 36 0.24 P(14) 0.60 25 0.15 R(12) 0.60 28 0.17 R(16) 0.64 30 0.19 R(20) 0.64 33 0.21 R(24) 0.62 31 0.19 R(28) 0.50 28 0.14 表 2中的数据表明,12C18O2的1000→0200波段优先振荡。对应波段的P(14)~P(28)谱线的输出波长范围为9.31μm ~9.41μm。
9.3μm射频激励板条波导CO2激光器的研究
Study on 9.3μm RF exited slab waveguide CO2 laser
-
摘要: 为了得到9.3μm的激光输出,采用比较5种CO2同位素气体小信号增益系数的方法,进行了理论分析。选择同位素气体12C18O2作为射频激励板条波导CO2激光器的工作介质,进行了实验验证,得到了9.3μm的激光输出;并对激光器的工作气压进行优化,在10.00kPa的工作气压下,得到了最大96W的功率输出。结果表明,12C18O2的中心波长在9.3μm附近,且可得到高功率的激光输出。该研究有利于9.3μm CO2激光器的国产化,以及提高核心部件的国产化率。Abstract: In order to obtain 9.3μm laser output, the small signal gain coefficients of 5 kinds of CO2 isotopes were compared. After theoretical analysis and experimental verification, isotope gas 12C18O2 was chosen as the working medium and laser output of 9.3μm was obtained. After the optimization of the working pressure of the laser, the maximum 96W power output was obtained under 10.00kPa working pressure. The results show that high power laser output can be obtained when the central wavelength of 12C18O2 is near 9.3μm. The study is helpful to localize 9.3μm CO2 laser and improve the localization rate of core components.
-
Key words:
- lasers /
- CO2 laser /
- CO2 isotope gas /
- 9.3μm wavelength /
- radio frequency excitation /
- slab waveguide
-
Figure 1. Spectral line range of CO2 isotope gas[14]
Table 1. Small signal gain and saturation intensity of P(20) transition line about five kinds of carbon dioxide isotope gases
band parameter 12C16O2 12C18O2 13C16O2 13C18O2 14C16O2 Ⅰ α0/10-2cm-1 1.07 0.3 0.64 0.42 0.55 Is/(W·cm-2) 47 30 38 39 56 Ⅱ α0/10-2cm-1 0.9 0.73 0.26 0.42 0.099 Is/(W·cm-2) 25 39 9 32 -3 measured α0, Ⅰ/α0, Ⅱ 1.2 0.4 2.5 1.0 5.6 calculated KⅠ/KⅡ 1.4 0.5 3.2 1.0 7.1 Table 2. Small signal gain and saturation intensity of 12C18O2
band transition α0/10-2cm-1 Is/(W·cm-2) α0 Is/(W·cm-3) Ⅰ P(28) 0.27 22 0.060 P(24) 0.30 24 0.071 P(20) 0.30 30 0.091 P(16) 0.28 24 0.069 P(14) 0.24 22 0.052 R(12) 0.24 23 0.054 R(16) 0.26 27 0.071 R(20) 0.27 29 0.079 R(24) 0.26 22 0.059 R(28) 0.23 20 0.047 Ⅱ P(28) 0.66 30 0.20 P(24) 0.71 34 0.24 P(20) 0.73 39 0.28 P(16) 0.67 36 0.24 P(14) 0.60 25 0.15 R(12) 0.60 28 0.17 R(16) 0.64 30 0.19 R(20) 0.64 33 0.21 R(24) 0.62 31 0.19 R(28) 0.50 28 0.14 -
[1] ZHOU B K, GAO Y Zh, CHEN T R, et al. Principles of lasers[M]. 6th ed. Beijing: National Defense Industry Press, 2009: 282-286(in Chinese). [2] WANG Y F, WU J, LIU Sh M, et al. Tunable characteristic of long pulse TE CO2 laser[J]. Infrared and Laser Engineering, 2008, 37(2):226-229(in Chinese). [3] CHENG Y Q. Investigation on rapidly tunable technology of grating lines selection TEA CO2 laser [D]. Beijing: Chinese Academy of Sciences, 2006: 5-14(in Chinese). [4] LI Sh M, HUANG W L. The principles and design of laser devices [M]. Beijing: National Defense Industry Press, 2005:61-71(in Ch-inese). [5] YU K X, JIANG T L, ZHAO Q D.Laser principles and laser techniques[M]. Beijing: Beijing University of Technology Press, 1998:76-101(in Chinese). [6] XIE J J, LI D J, ZHANG C Sh, et al. Acousto-optically Q-switched CO2 laser[J]. Optics and Precision Engineering, 2009, 17(5):1008-1013(in Chinese). [7] LIAO J M, LI Y D, LI Zh H, et al. Multi-frequency transversely excited atmospheric pressure CO2 laser [J]. High Power Laser and Particle Beams, 2009, 21(10): 1459-1461(in Chinese). [8] XU D F, LI Y D, CHEN M. Theotetic model of same space dual-wavelength tunable TEA CO2 laser [J]. Infrared and Laser Engineering, 2008, 38(5):441-444(in Chinese). [9] YAN T, GUO H P, WANG Zh, et al. Research on unstable-waveguide hybrid resonator of parabolic mirrors for 3kW radio frequency slab CO2 laser [J]. Laser Technology, 2016, 40(6):796-800(in Chinese). [10] SHAO Ch L, SONG X F, ZHANG L M, et al. High power TEA CO2 laser with two wavelength free shift output structure[J]. Optics and Precision Engineering, 2011, 19(2):429-436(in Chinese). doi: 10.3788/OPE. [11] SHAO Ch L, YANG G L, LI D J, et al. 9. 3μm branch selection research of high power pulse CO2 laser[J]. Journal of Chinese Lasers, 2011, 38(3):40-45(in Chinese). [12] SONG X F, SHAO C L, GUO J, et al. Two-wavelength laser switching output technology in high power TEA CO2 laser[J]. High Power and Particle Beams, 2011, 23(2): 303-307(in Chinese). doi: 10.3788/HPLPB [13] GUO J, LI D J, WANG T F, et al. High power CO2 laser and its application technology[M]. Beijing: Science Press, 2013: 82-91(in Chinese). [14] ZHANG L L. Research on a miniature tunable isotope TEA 13C16O2 laser[D]. Harbin: Harbin Institute of Technology, 2008: 1-7(in Chinese). [15] FREED L E, FREED C, O'DONNELL R G, et al. Small signal gain and saturation intensity of 0001-[1000, 0200]Ⅰ and Ⅱ vibrational band transitions in sealed-off CO2 isotope lasers [J]. IEEE Journal of Quantum Electronics, 1982, 18(8): 1229-1236. doi: 10.1109/JQE.1982.1071683 [16] SILVER M, HARTIWICK T S, POSAKONY M J. Gain measurements in CO2 isotope lasers [J]. Journal of Applied Physics, 1970, 41(11): 4566-4568. doi: 10.1063/1.1658497