-
实验中使用的激光器为IPG YRL-4000光纤激光器,该激光器主要参量为:最大功率4000W,激光波长1.07μm,光斑直径0.3mm。实验中所用机器人为ABB IRB4400/60机器人,额定负载60kg。同时使用自行研制的光信号监测系统来实时采集焊接过程中的光信号。其中,传感器内集成了可见光传感器和红外传感器,选用500nm~700nm波段的带通滤光片检测可见光信号,1200nm波段以上透过的高通滤光片检测红外光信号。实验装置示意图如图 1所示。实验材料采用301不锈钢,其化学成分如表 1所示。
Table 1. Chemical compositions (mass fraction) of 301 stainless steel
C Si Mn Cr Ni S P Fe ≤0.0015 ≤0.010 ≤0.020 0.160~0.180 0.060~0.080 ≤0.0003 ≤0.00045 balance -
为了测试光信号对焊接过程中产生的缺陷的识别能力,本次实验以301不锈钢的对接和堆焊两种焊接方式为主,模拟激光焊接过程中容易产生的质量问题,通过采集和分析焊接过程中的两路光信号,实现激光焊接间隙、错边等常见质量问题的监测与识别。
-
本实验中采用零离焦,光斑直径为0.48mm,焊接时的拼缝间隙对于焊接过程和质量有着重要影响,间隙过大导致焊缝下凹、激光能量漏失等问题,严重时导致焊接过程无法进行以致完全不能形成焊缝。本次试验是通过在焊接路径上设置了0.3mm的间隙来测试焊接出现缺陷时信号的检测效果。试验主要工艺参量如表 2所示。其中焊接过程中未加保护气体,目的是防止激光焊接过程中等离子体被吹散,保证采集数据的准确性。
Table 2. Process parameters of gap experiment
process parameters value/range laser power 2.5kW defocus amount 0mm side assist gas flow none welding speed 3.0m/min -
错边也是激光焊接过程中常见的质量问题,引起错边的主要原因有两方面:板材变形和装夹,这两种情况在实际使用中常有发生,尤其是长焊缝对接。
本次实验中在焊接路径上设置了长度为9mm、错边量为1mm的错边,来测试激光焊接过程中错边缺陷的信号变化特点。其工艺参量与间隙的监测实验相同,如表 2所示。
光纤激光焊接过程中缺陷的监测与诊断
Monitoring and detecting of defects during fiber laser welding
-
摘要: 为了识别激光焊接过程中间隙和错边缺陷,采用自身搭建的光纤激光焊接在线监测系统,实现不锈钢焊接过程中等离子体可见光信号及熔池红外光信号的实时监测,并利用滤波和短时傅里叶变换的信号处理方法对不同缺陷的光信号进行数据分析。得到了信号时域频域随焊接缺陷的变化规律,当出现间隙缺陷时,可见光信号时域幅值从1.5V降至0.2V,1000Hz~4000Hz频率成分缺失,红外光信号时域幅值由3.5V降至1.0V,2000Hz~7000Hz频率成分缺失;当出现错边缺陷时,可见光信号时域幅值从2.0V降至0.5V,红外光信号时域幅值由4.0V降至0.5V,两者0Hz~1000Hz频率成分均缺失。结果表明,可见光信号与红外光信号与激光焊接状态存在一定的相关性,利用光信号的幅值与频率的变化可以有效地识别激光焊接过程中的缺陷。这对实际生产具有一定的应用价值。Abstract: In order to identify gap and edge defects in laser welding process, plasma visible light signal and infrared signal of molten pool during the process of stainless steel welding was monitored by a self-made optical fiber laser welding on-line monitoring system. And the signal processing methods of filtering and short time Fourier transform were used to analyze the optical signals with different defects and the variation law of time domain and frequency domain with welding defects was obtained. When a gap defect occurred, the time domain amplitude of the visible signal decreased from 1.5V to 0.2V without any components in the range of 1000Hz~4000Hz. The time domain amplitude of infrared signal decreased from 3.5V to 1.0V without any components in the range of 2000Hz~7000Hz. When an edge defect occurred, the time domain amplitude of the visible signal decreased from 2.0V to 0.5V and the time domain amplitude of infrared signal decreased from 4.0V to 0.5V without any components in the range of 0Hz~1000Hz for both signals. The results show that there is a certain correlation between the visible signal, the infrared signal and the laser welding state. The defects in the laser welding process can be effectively identified by the change of amplitude and frequency of the optical signal. The study has certain application value for actual production.
-
Table 1. Chemical compositions (mass fraction) of 301 stainless steel
C Si Mn Cr Ni S P Fe ≤0.0015 ≤0.010 ≤0.020 0.160~0.180 0.060~0.080 ≤0.0003 ≤0.00045 balance Table 2. Process parameters of gap experiment
process parameters value/range laser power 2.5kW defocus amount 0mm side assist gas flow none welding speed 3.0m/min -
[1] ZHANG Sh X, WANG M Y, ZHANG Zh L, et al.Application of laser processing technology in railway vehicle manufacturing [DB/OL].(2013-10-26)[2016-12-28].http://navi.cnki.net/KNavi/DPaperDetail?pcode=CIPD&lwjcode=ZGVE201310002&hycode=020611(in Chinese). [2] TANG Ch.Reasearch of laser welding process of stainless steel train body[D]. Wuhan: Huazhong University of Science and Technology, 2012: 1-70(in Chinese). [3] YANG H L, JIN X Zh, XIU T F, et al.Numerical simulation of fiber laser welding of steel/aluminum dissimilar metals[J]. Laser Techno-logy, 2016, 40(4):606-609(in Chinese). [4] GAO D X, DUAN A Q, MENG L, et al. Relation between relative intensities of infrared radiation and welding parameter during CO2 laser welding of TA15[J]. Transactions of the China Welding Institution, 2012, 33(6):89-92(in Chinese). [5] HU Ch K, CHENG P F, HUANG T. The behavior and control technology of laser induced plasma during laser penetration welding[J]. Laser Journal, 2003, 24(5): 78-80(in Chinese). [6] GAO X D, YOU D Y, KATAYAMA S. A new approach to measure deviation of seam tracking in high-power fiber laser welding[J].Transactions of the China Welding Institution, 2011, 32(5):49-52(in Chinese). [7] ZHANG P X, CHEN J H, DU W J. Quality monitoring of resistance spot welding based on image processing of welding spot surface [J].Transactions of the China Welding Institution, 2006, 27(12):57-60(in Chinese). [8] BRUNCKO J, UHEREK F, MICHALKA M. Monitoring of laser welding by optical emission spectroscopy[J]. Laser Physics, 2003, 13(4): 669-673. [9] SUN A, KANNATEY-ASIBU E, GARTNER M. Monitoring of laser weld penetration using sensor fusion [J]. Journal of Laser Applications, 2002, 14(2):114-121. doi: 10.2351/1.1471562 [10] ALI A, FARSON D. Statistical classification of spectral data for laser weld quality monitoring [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2002, 124(2): 323-325. doi: 10.1115/1.1455028 [11] SZYMANSKI Z, HOFFMAN J, KURZYNA J. Plasma plume oscillations during welding of thin metal sheets with a CW CO2 laser [J]. Journal of Physics, 2001, D34(2): 189-199. [12] WANG Ch M. Multi-sensor real-time quality diagnosis and its theoretical basis for laser welding [D].Wuhan: Huazhong University of Science and Technology, 2005: 1-154(in Chinese). [13] MIRAPEIX J, COBO A, CONDE O M, et al. Real-time arc welding defect detection technique by means of plasma spectrum optical ana-lysis[J]. NDT & E International, 2006, 39(5): 356-360. [14] ZHOU C, XIA H L, CHEN G Y, et al.Effect of fiber laser welding parameters on root humps[J]. Laser Technology, 2015, 39(5):625-630(in Chinese). [15] WANG J, WANG C, MENG X, et al. Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding[J]. Optics & Laser Technology, 2012, 44(1):67-70. [16] ZHANG X, CHEN W, ASHIDA E, et al. Relationship between weld quality and optical emissions in underwater Nd:YAG laser welding[J]. Optics & Lasers in Engineering, 2004, 41(5):717-730. [17] BARDIN F, COBO A, LOPEZ-HIGUERA J M, et al. Closed-loop power and focus control of laser welding for full-penetration monitoring.Applied Optics, 2005, 44(1):13-21. doi: 10.1364/AO.44.000013 [18] SIBILLANO T, ANCONA A, BERARDI V, et al. Correlation analysis in laser welding plasma[J]. Optics Communications, 2005, 251(s1/3):139-148. [19] SIBILLANO T, ANCONA A, BERARDI V, et al. Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys[J]. Optics & Lasers in Engineering, 2006, 44(12):1324-1335. [20] SCHMIDT M, OTTO A, KAGELER C. Analysis of YAG laser lap-welding of zinc coated steel sheets[J]. CIRP Annals—Manufacturing Technology, 2008, 57(1):213-216. doi: 10.1016/j.cirp.2008.03.043 [21] SHAO J, YAN Y. Review of techniques for on-line monitoring and inspection of laser welding[C]//Journal of Physics Conference Series. Bristol, UK: IOP Publishing Ltd., 2005: 101-107.