-
激光场与He原子作用的3维薛定谔方程为[26]:
$ {\rm{i}}\frac{{\partial \varphi (r, t)}}{{\partial t}} = \left[ { - \frac{1}{2}\frac{{{\partial ^2}}}{{\partial {r^2}}} + V\left( r \right) - rE\left( t \right)} \right]\varphi \left( {r, t} \right) $
(1) 式中,V(r)=-1.535/r是He原子的库伦势,r为电子坐标,t为激光作用时间,φ(r, t)为电子波函数。激光场E(t)=Eexp[-4(ln2)t2/τ2]cos(ω1t+αt2/2)+EHCP(t),采用原子单位制(atomic unit, a.u.), 其中ω1,E和τ分别为激光场的频率、振幅和脉宽; α为啁啾参量,α>0.0表示正向啁啾;α < 0.0表示负向啁啾。EHCP(t)=kθ(t-τd)E{400(t-τd)3exp[-8(t-τd)/τHCP]/τHCP3-0.004(t-τd)5exp[-(t-τd)/τHCP]/τHCP5}为半周期激光场,其中kE,τHCP和τd分别为半周期激光场的振幅(k为比例系数)、脉宽以及与主频场的延迟时间。θ(t-τ)为阶跃函数。偶极加速度可以表示为[27]:a(t)=〈φ(r, t)|-∂V(r)/∂r+E(t)|φ(r, t)〉。高次谐波谱图可表示为:$S\left( \omega \right) = {\left| {{{(2{\rm{ \mathsf{ π} }})}^{ - 1/2}}\int_{_0}^{{T_{{\rm{total}}}}} {a(t){{\rm{e}}^{ - {\rm{i}}{\omega _1}t}}{\rm{d}}t} } \right|^2}$,Ttotal为总作用时间,ω表示谐波辐射频率。小波变换时频分析可以表示为[28]:$A\left( {t,\omega } \right) = \smallint a\left( {{t^\prime }} \right)\sqrt {{\omega _1}} W({\omega _1}\left( {{t^\prime } - t} \right)){\rm{d}}{t^\prime }$,其中t′为时频变换后的积分时间变量,W(x)=ξ-1/2eixe-x2/(2ξ2),ξ = 15为小波变换数值。阿秒脉冲强度Iatto(t)可以通过叠加谐波光谱获得:Iatto(t)=${\left| {\sum\limits_q {{{\left( {\smallint a(t){{\rm{e}}^{ - {\rm{i}}q{\omega _1}t}}{\rm{d}}t} \right)}^{{{\rm{e}}^{{\rm{i}}q{\omega _1}t}}}}} } \right|^2}$,q为谐波次数。
啁啾激光调控谐波截止能量及强度的研究
Study on harmonic cutoff energy and intensity under the control of chirped laser
-
摘要: 为了调控谐波辐射过程,采用数值求解3维薛定谔方程的方法,进行了啁啾激光对调控谐波辐射截止能量及强度的理论分析。通过分析激光包络图、电子电离几率、谐波辐射时频分析图,给出了谐波截止能量延伸以及谐波强度增强的原因。结果表明,在负向啁啾场下,谐波截止能量附近的强度与无啁啾参量相比增强了1个数量级;当引入半周期调控激光场后,谐波截止能量得到有效延伸;适当叠加谐波谱上的谐波,可获得一个46as的脉冲;该脉冲强度比无啁啾参量下获得的脉冲强1个数量级。该研究对调控谐波的辐射过程及阿秒脉冲的输出是有帮助的。Abstract: In order to control the harmonic emission process, the chirp pulse control on the harmonic cutoff and the harmonic intensity was theoretically investigated by using 3-D Schr dinger equation. Laser profiles, ionization probabilities, time-frequency analyses of the harmonic spectra were shown to explain the extension and the enhancement of harmonic spectra. The results show that the intensity of the harmonic cutoff region in the presence of the down-chirp pulse is enhanced by one order of magnitude in comparison with the chirp-free pulse case. By properly adding a half-cycle controlling pulse, the harmonic cutoff is remarkably extended. By superposing a properly selected harmonics, a 46as pulse can be produced. The intensity of the generated pulse is one order of magnitude higher than that from the chirp-free case. The investigation is helpful to control the harmonic emission and to produce the attosecond pulse.
-
Figure 3.
a—HHG spectrum driven by the down-chirp field combined with a half-cycle pulse b—time-frequency analysis of the harmonic spectra for the case of the combined field c—laser profiles of the 5fs/800nm field, the half-cycle controlling pulse, the combined field and the ionization probability of the combined field
-
[1] WANG Ch, LIU H L, TIAN J Sh, et al. Analysis of intrinsic atomic phase in process of extreme ultraviolet attosecond pulse generation[J]. Laser Technology, 2012, 36(3):342-345(in Chinese). [2] UIBERACKER M, UPHUES T, SCHULTZE M, et al. Attosecond real-time observation of electron tunnelling in atoms[J]. Nature, 2007, 446(7136):627-632. doi: 10.1038/nature05648 [3] GOULIELMAKIS E, SCHULTZE M, HOFSTETTER M, et al. Single-cycle nonlinear optics[J]. Science, 2008, 320(5883):1614-1617. doi: 10.1126/science.1157846 [4] WANG Ch, KANG Y F, TIAN J Sh, et al. Analysis of phase dependence of the two single-attosecond-pulse generation techniques[J]. Laser Technology, 2012, 36(4):516-519(in Chinese). [5] CORKUM P B. Plasma perspective on strong field multiphoton ionization[J]. Physical Review Letters, 1993, 71(13):1994-1997. doi: 10.1103/PhysRevLett.71.1994 [6] CHANG Z H. Chirp of the single attosecond pulse generated by a polarization gating[J]. Physical Review, 2005, A71(2):023813. [7] SANSONE G, BENEDETTI E, CALEGARI F, et al. Isolated single-cycle attosecond pulses[J]. Science, 2006, 314(5798):443-446. doi: 10.1126/science.1132838 [8] LOUIY M, ARNOLD C L, MIRANDA M, et al. Gating attosecond pulses in a noncollinear geometry[J]. Optica, 2015, 2(6):563-566. doi: 10.1364/OPTICA.2.000563 [9] ZENG Z, CHENG Y, SONG X, et al. Generation of an extreme ultraviolet supercontinuum in a two-color laser field[J]. Physical Review Letters, 2007, 98(20):203901. doi: 10.1103/PhysRevLett.98.203901 [10] LU R F, HE H X, GUO Y H, et al. Theoretical study of single attosecond pulse generation with a three-colour laser field[J]. Journal of Physics, 2009, B42(22):225601. [11] FENG L Q, CHU T S. Generation of an isolated sub-40as pulse using two-color laser pulses:Combined chirp effects[J]. Physical Review, 2011, A84(5):053853. [12] LI P C, LAUGHLIN C, CHU S I. Generation of isolated sub-20-attosecond pulses from He atoms by two-color midinfrared laser fields[J]. Physical Review, 2014, A89(2):023431. [13] FENG L Q, LIU H. Unipolar pulse assisted generation of the coherent XUV pulses[J]. Optics Communications, 2015, 348(8):1-6. [14] KIM S, JIN J, KIM Y J, et al. High-harmonic generation by resonant plasmon field enhancement[J]. Nature, 2008, 453(7196):757-760. doi: 10.1038/nature07012 [15] SHAARAN T, CIAPPINAM F, LEWENSTEIN M. Quantum-orbit analysis of high-order-harmonic generation by resonant plasmon field enhancement[J]. Physical Review, 2012, A86(2):023408. [16] ZHANG G T, LIU X S. Generation of an extreme ultraviolet supercontinuum and isolated sub-50as pulse in a two-colour laser field[J]. Journal of Physics, 2009, B42(12):125603. [17] FENG L Q, CHU T S. Intensity improvement in the attosecond pulse generation with the coherent superposition initial state[J]. Physics Letters, 2012, A376(17):1523-1530. [18] ISHIKAWA K. Photoemission and ionization of He+ under simultaneous irradiation of fundamental laser and high-order harmonic pulses[J]. Physical Review Letters, 2003, 91(4):043002. doi: 10.1103/PhysRevLett.91.043002 [19] LI P C, ZHOU X X, WANG G L, et al. Isolated sub-30as pulse generation of an He+ ion by an intense few-cycle chirped laser and its high-order harmonic pulses[J]. Physical Review, 2009, A80(5):053825. [20] DU H C, WANG H Q, HU B T. Isolated short attosecond pulse generated using a two-color laser and a high-order pulse[J]. Physical Review, 2010, A81(6):063813. [21] FENG L Q, LIU H. Ultraviolet source assisted enhancement of attosecond pulse[J]. Chinese Journal of Chemical Physics, 2015, 28(1):21-26. [22] WEI P F, MIAO J, ZENG Z N, et al. Selective enhancement of a single harmonic emission in a driving laser field with subcycle waveform control[J]. Physical Review Letters, 2013, 110(23):233903. doi: 10.1103/PhysRevLett.110.233903 [23] WEI P F, ZENG Z N, JIANG J M, et al. Selective generation of an intense single harmonic from a long gas cell with loosely focusing optics based on a three-color laser field[J].Applied Physics Letters, 2014, 104(15):151101. doi: 10.1063/1.4871513 [24] WANG X, JIN C, LIN C D. Coherent control of high-harmonic generation using waveform-synthesized chirped laser fields[J]. Physical Review, 2014, A90(2):023416. [25] LARA-ASTIASO M, SILVA R E F, GUBAYDULLIN A, et al. Enhancing high-order harmonic generation in light molecules by using chirped pulses[J]. Physical Review Letters, 2016, 117(9):093003. doi: 10.1103/PhysRevLett.117.093003 [26] LU R F, ZHANG P Y, HAN K L. Attosecond-resolution quantum dynamics calculations for atoms and molecules in strong laser fields[J]. Physical Review, 2008, E77(6):066701. [27] BURNETT K, REED V C, COOPER J, et al. Calculation of the background emitted during high-harmonic generation[J]. Physical Review, 1992, A45(5):3347-3349. [28] ANTOINE P, PIRAUX B, MAQUET A. Time profile of harmonics generated by a single atom in a strong electromagnetic field[J]. Physical Review, 1995, A51(3):R1750-R1753.