-
当单色激光透过光路中的一对平行光学界面时,激光在两介面间多次反射产生多束激光。多束激光发生干涉,影响透射光光强波动即为光学条纹。如图 1所示, 一束光透过平行介面后可分成直接透过,两次反射,四次反射等多路透射光。根据法布里-珀罗(Fabry-Perot, F-P)标准具干涉仪原理,透射激光等效透过率t与介面反射率r,介面间光程S,波长λ相关,t表达式为[8]:
$ \left\{ \begin{array}{l} t = \frac{1}{{1 + \frac{{4r}}{{{{(1 - r)}^2}}}\cdot{\rm{si}}{{\rm{n}}^2}\frac{\delta }{2}}}\\ \delta = 2{\rm{ \mathsf{ π} }}\cdot\frac{{2S}}{\lambda } \end{array} \right. $
(1) 大多数激光光谱测量系统受光学条纹影响。通常激光器波长λ调谐范围远小于平均波长λ。因此,可近似认为相位差随激光波长成线性变化,同时TDLAS系统中产生光学条纹的介面反射率R较小,因此光学条纹常使透射率随波长变化而正弦状波动,使接收到的光强信号在原有的吸收信号上叠加了一个正弦状光学条纹。条纹相邻两峰值点的间隔被称为自由光谱区(free spectral range, FSR),自由光谱区可由波数ve、波长λe、频率fe表示,其表达式如下所示[14]:
$ \left\{ \begin{array}{l} {v_{\rm{e}}} = \frac{1}{{2nl}}\\ {\lambda _{\rm{e}}} = \frac{{{{\overline \lambda }^2}}}{{2nl}}\\ {f_{\rm{e}}} = \frac{c}{{2nl}} \end{array} \right.{\rm{ }} $
(2) 式中,n为折射率, l为平行界面间距离,λ为平均波长,c为光速。
反射光中同样存在光学条纹,其条纹间隔与透射光相同。由于光从光疏到光密反射存在半波损失,因此反射光与透射光的条纹相位相反。
许多激光光谱测量系统的光路中存在平行的光学介面,如大多数光电检测器窗、一部分激光器窗、气体池窗等[10, 17],并由此导致光学条纹,影响光谱测量。当光路中存在一平行光学介面的情况下,透射光干涉条纹与反射光干涉条纹幅度成正比,条纹间隔相同,条纹相位相反。可认为反射光光学条纹是透射光光学条纹的映射,这也和能量守恒原则相对应。
-
构建实验系统如图 2所示。激光驱动器(Lightwave,LDC3908)驱动分布反馈式激光器(古河),激光波长在低频调谐(16Hz)的基础上叠加一个高频正弦调制(16kHz)。出射激光经过分束器后穿过光程长为2m的怀特池(Infrared Analysis 16-V),由光电检测器(photoelectric detector, PD)PD1接收(thorlabs,PDA-10ECS),再经过锁相放大器解调后得到二次谐波信号(2f信号),将锁相放大器X通道输出信号上传至电脑进行进一步分析。与常规TDLAS系统不同的是,该系统中加入了额外的一个光电检测器PD2,测量后向反射光学条纹用于补偿。为了研究光学条纹的补偿方法,在怀特池中使用了一片原配的平行窗,以产生光学条纹并观测。另一片使用了定制的楔形窗以尽量简化系统中的光学条纹。
激光器波长的有效调谐范围约为1579.7nm~1580.25nm,覆盖了一条中心波长为1580.04nm的CO2吸收谱线。根据光学条纹映射特性,提出的光学条纹抑制方法,可使用PD2对应的2f信号补偿光路中平行介面产生的光学条纹,得到更真实的CO2吸收信号VCO2,如下所示:
$ {V_{{\rm{C}}{{\rm{O}}_2}}} = {V_{{\rm{P}}{{\rm{D}}_1}}} - k{V_{{\rm{P}}{{\rm{D}}_{\rm{2}}}}} $
(3) 式中, VPD1为PD1对应的2f谐波信号,VPD2为PD2对应的2f信号; k为常数,与分束器透射率、反射率及怀特池窗反射率相关,可根据谐波信号测量结果得出最优值。
可调谐激光光谱系统中光学条纹的补偿方法
Suppression method for optical fringes in TDLAS systems
-
摘要: 为了消除光学条纹对检测精度的影响,基于光学条纹的映射特性,提出了一种可有效补偿光路中平行介面造成的光学条纹的方法。在CO2检测系统中进行了理论分析和实验验证,并展示了该方法的使用过程及补偿结果。结果表明,即使在光学条纹漂移的情况下,该方法仍可有效补偿光学条纹,使测量信号与标准气体吸收信号的拟合相关度由0.8298提升至0.9934,体积分数测量值标准差由1260×10-6降低至48.5×10-6。该方法极适合补偿检测器窗、气体池窗以及其它已集成于系统的光学元件造成的光学条纹,在可调谐二极管激光器吸收光谱技术领域具有较大的应用价值。
-
关键词:
- 光谱学 /
- 可调谐二极管激光光谱 /
- 光学条纹 /
- 气体检测 /
- 二次谐波
Abstract: In order to suppress effect of optical fringes on detection accuracy, based on the characteristics of optical fringes, a method was proposed to compensate the optical fringes produced by parallel surfaces. Theory analysis and experimental verification were performed in a carbon dioxide detection system. The process and compensation results were shown. The results show that even in the case of optical fringe drift, the method can effectively compensate the optical fringes. The fitting correlation between the measured gas absorption signal and the standard gas absorption signal is increased from 0.8298 to 0.9934. The standard deviation of the measurement value of volume fraction was reduced from 1260×10-6 to 48.5×10-6. The method is very suitable for compensating the optical fringes caused by detector windows, gas pool windows, and other optical elements integrated into the system. It has great application value in the field of tunable diode laser absorption spectroscopy. -
[1] LI M X, LIU J G, KAN R F, et al. Design of real-time measurement of atmospheric CO and CH4 based on tunable diode laser spectroscopy system[J].Acta Optica Sinica, 2015, 35(4):389-395(in Chinese). [2] CHEN X, KAN R F, YANG Ch G, et al. Precise measurement of air pressure using tunable diode laser absorption spectroscopy technology[J].Journal of Optoelectronics·Laser, 2015, 26(4):719-723(in Chinese). [3] XIONG B, DU Zh H, LIU L, et al. Hollow-waveguide-based carbon dioxide sensor for capnography[J]. Chinese Optics Letters, 2015, 13(11):111201. doi: 10.3788/COL [4] REID J, LABRIE D. Second-harmonic detection with tunable diode lasers-comparison of experiment and theory[J].Applied Physics, 1981, B26(3):203-210. [5] LAN L J, DING Y J, JIA J W, et al. Theoretical and experimental study of measuring gas temperature in vacuum environment using tunable diode laser absorption spectroscopy[J]. Acta Physica Sinica, 2014, 63(8):83301(in Chinese). [6] HE J F, KAN R F, XU Zh Y, et al. Derivative spectrum and concentration inversion algorithm of tunable diode laser absorption spectroscopy oxygen measurement[J]. Acta Optica Sinica, 2014, 34(4):280-285(in Chinese). [7] ZHANG Sh F, LAN L J, DING Y J, et al. Theoretical and applied researches on measuring line width in wavelength modulation spectroscopy[J]. Acta Physica Sinica, 2014, 64(5):053301(in Chinese). [8] WERLE P. Accuracy and precision of laser spectrometers for trace gas sensing in the presence of optical fringes and atmospheric turbulence[J]. Applied Physics, 2011, B102(2):313-329. [9] KLUCZYNSKI P, GUSTAFSSON J, LINDBERG A M, et al. Wavelength modulation absorption spectrometry-an extensive scrutiny of the generation of signals[J]. Spectrochimica Acta, 2001, B56(8):1277-1354. [10] XIONG B, DU Zh H, LI J. Modulation index optimization for optical fringe suppression in wavelength modulation spectroscopy[J]. Review of Scientific Instruments, 2015, 86(11):113104. doi: 10.1063/1.4935920 [11] CHEN J Y, LIU J G, ZHANG Y J, et al. Autobalanced detection based on tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2007, 27(2):350-353(in Chinese). [12] PERSSON L, ANDERSSON F, ANDERSSON M, et al. Approach to optical interference fringes reduction in diode laser absorption spectroscopy[J]. Applied Physics, 2007, B87(3):523-530. [13] HODGKINSON J, MASIYANO D, TATAM R P. Gas cells for tunable diode laser absorption spectroscopy employing optical diffusers. Part 1:single and dual pass cells[J]. Applied Physics, 2010, B100(2):291-302. [14] WEBSTER C R. Brewster-plate spoiler:a novel method for reducing the amplitude of interference fringes that limit tunable-laser absorption sensitivities[J]. Journal of the Optical Society of America, 1985, B2(9):1464-1470. [15] SILVER J A, STANTON A C. Optical interference fringe reduction in laser absorption experiments[J].Applied Optics, 1988, 27(2):1914-1916. [16] AHLBERG H, LUNDQVIST S, SHUMATE M S, et al. Analysis of errors caused by optical interference effects in wavelength-diverse CO2 laser long-path systems[J]. Applied Optics, 1985, 24(22):3917-3923. doi: 10.1364/AO.24.003917 [17] HANGAUER A, CHEN J, STRZODA R. Wavelength modulation spectroscopy with a widely tunable InP-based 2.3μm vertical-cavity surface-emitting laser. Optics letters, 2008, 33(14):1566-1568. doi: 10.1364/OL.33.001566 [18] CASSIDY D T, REID J. Harmonic detection with tunable diode lasers-two-tone modulation[J]. Applied Physics, 1982, B29(4):279-285. [19] CARLISLE C B, COOPER D E, PREIER H. Quantum noise-limited FM spectroscopy with a lead-salt diode laser[J]. Applied Optics, 1989, 28(13):2567-2576. doi: 10.1364/AO.28.002567 [20] MENG Y, LIU T, LIU K, et al. A modified empirical mode decomposition algorithm in TDLAS for gas detection[J]. Photonics Journal, IEEE, 2014, 6(6):1-7.