-
激光清除异物时要求能够远程损毁异物而不损伤由铝、铝合金、钢等金属材料制成的导、地线,激光与材料相互作用主要与激光波长、功率密度、作用时间,以及材料的熔点、相变温度、热导率、比热容、材料表面对激光的吸收率等有关,架空线路上异物绝大部分是非金属材料的塑料和化纤制品,其热导率、熔点、燃点或软化温度远低于金属的(见表 1),需选择合适的激光器并采用合适的激光功率密度实现激光远程清除异物。
Table 1. Thermal properties of wire and some common foreign body material
material thermal conductivity/ (W·m-1· K-1) specific heat capacity/ (J·kg-1· K-1) melting point/ ignition point/ ℃ iron 80 450 1535 pure aluminum 237 910 660 aluminium alloy 100~237 ≈904 500~660 polyethylene 0.32~0.4 2301 < 200 polyvinyl chloride 0.12~0.17 1283~1464 < 200 polyester fiber 0.25 1340 250~270 nylon 0.15~0.50 1500~1930 < 390 rubber < 0.25 1700 350 相对于可见光和紫外波段激光,红外激光对金属表面吸收率较低,对人眼相对安全,传输时受大气气溶胶的吸收和散射比可见光和紫外光小很多[10],在空气中传输损耗和偏移量较小,而且红外激光器技术成熟,应用广泛,价格适中,适合作为异物激光清除系统光源。红外激光器中,考虑光束质量和效率,光纤激光器和CO2激光器是较好的选择,而CO2激光器目前成本相对较低,且对非金属材料作用效果更佳[11-12],适合未来大面积推广应用,本文中选择CO2激光器作为实验和设备的激光光源。
-
为确定激光用于清除异物的可行性,确定清除异物所需最合适的激光功率密度,采用图 1中的方法对常见异物材料[13-14]进行实验。激光功率100W,激光束在焦点后发散,在不同位置具有不同的光斑面积和相应的激光功率密度,将异物材料裁剪成10cm宽的样品,假定10s时间内能够烧穿异物,且40s内能够割断异物样品的功率密度为合格,从远及近放置和灼烧异物,记录每种异物切割合格的位置,并测量光斑尺寸,可计算得到该位置的功率密度。
通过对常用的风筝布料、风筝线、广告布、遮阳网、各种塑料布、气球、孔明灯等30余种常见异物的实验,计算确定采用CO2激光清除所有异物,所需的最小功率密度约为10W/cm2,工程应用中一般需保留一定裕度,采用2倍于最小功率密度(20W/cm2)的激光作为清除异物用激光(以下简称清异激光)。
-
利用激光清除异物的最大优势主要体现在对远离杆塔、高度较高的高电压等级导、地线异物清除方面,激光清除异物过程中难免辐照导线,作业过程中甚至需要沿导线辐照切割异物,高压线路导线一般采用钢芯铝绞线(aluminium conductors steel-reinforced,ACSR),外层为铝绞线,由于铝的电导率比钢的高很多,而且交流电在传输过程中存在趋肤效应,因此铝绞线起主要的导电作用,内部钢芯线主要起抗拉作用,钢芯容易腐蚀,故钢芯上一般镀锌或镀铝保护。由于清异激光功率密度较小,金属导线对10640nm激光吸收率较低,清异激光对钢芯铝绞线直接造成严重力学退化或高温熔断的可能性极小,本文中采用COMSL Multiphysics进行有限元仿真研究清异激光是否会造成导线涂镀层高温熔化损伤、铝线熔化断股。为便于仿真,不计芯线之间的空隙,认为材料各向同性,涂镀层在模型中不考虑,建立如图 2所示几何仿真模型[15-16]。
钢芯铝绞线规格众多,规格越小的导线热容和散热条件相对越差,激光辐照损伤可能性越大,本文中选用钢芯铝绞线中规格最低的LGJ-10/2作为研究对象,LGJ-10/2由6根1.5mm直径的铝线和1根1.5mm直径的钢芯线绞制而成,外径4.5mm,最大连续载流量87A。仿真中考虑导线载流温升、日照温升(1000W/m2,日照吸收率取为0.5)[16-17]、激光辐照热作用、金属热传导、自然对流散热、表面辐射散热,不考虑强制对流散热,金属铝对10640nm激光吸收率较低,室温下光滑铝表面对10640nm激光的吸收率为0.019[18],仿真中设定为较极端的数值0.9。
仿真结果如图 3所示。激光辐照导线时最高温度299.581℃远低于铝的熔点600℃,故不会熔化损伤铝绞线或镀铝层,钢芯线上的最高温度299.172℃远低于锌熔点420℃[19],未达到熔化损伤镀锌层的温度。实际情况下,导线对激光的吸收率远低于0.9,空气流动造成的强制对流散热会进一步降低温度,因此清异激光辐照钢芯铝绞线时的实际温度低于仿真温度,因而不会对导线有所损伤。
采用清异激光分别对钢芯铝绞线、铝绞线单丝进行辐照,图 4为钢芯铝绞线在20W/cm2功率密度激光辐照5min后的照片。在钢芯铝绞线的辐照点后部贴温度传感器,测得最高温度为130℃。图 5a为辐照前的导线图片; 图 5b为辐照后的导线图片。结果显示,钢芯铝绞线和单股铝线在清异激光辐照5min后均无损伤。
-
异物除缠绕导线外,还可能缠绕绝缘子、横担、塔架部分。绝缘子主要有复合绝缘子、玻璃绝缘子、陶瓷绝缘子,复合绝缘子采用有机复合材料制成,非常容易受到激光损伤,玻璃绝缘子和陶瓷绝缘子在清异激光的作用下也可能受到损伤[20-21];横担有铁、瓷、合成绝缘材料等,其中铁材质的可承受清异激光辐照,瓷和合成绝缘材料有受损可能;塔架一般由钢铁组成,可承受清异激光辐照。因此,对于绝缘子上的异物,若采用激光清除,应避免直射绝缘子,可调整光束方向,避开绝缘子切割清除异物,或采用传统上塔清除;对于横担上的异物,应根据其材质采用不同的清除方法;对于塔架上的异物,可直接用激光清除。
架空线路异物激光清除技术研究
Study on laser removal technology of foreign bodies on overhead transmission lines
-
摘要: 为了解决传统工具和方法难以经济、高效、安全地清除架空输电线路异物的问题,提出了陆基定向能红外激光远程切割清除架空线路异物的方法,并进行了理论分析、有限元仿真和实验验证。基于上述研究,研制了架空线路异物激光清除设备,并进行了模拟实验和现场工程应用。结果表明,清除异物所需最小功率密度为20W/cm2,该功率密度的激光对导线不会造成损伤。该设备可远程、快速、带电、安全地清除架空线路异物。Abstract: In order to solve the problem that the traditional tools and methods can not meet the requirement of clearing foreign object debris economically, efficiently and safely, the method of clearing foreign object debris on overhead power lines with land-based directed energy laser remotely was proposed. Theoretical analysis, finite element simulation and experimental verification were carried out. Based on the above research, the apparatus for removing foreign bodies from overhead lines by laser was developed, tested and applied in engineering practice. The result shows that the appropriate minimum power density is 20W/cm2, and the laser irradiation of 20W/cm2 is unable to damage the wire. The laser removal apparatus can remove foreign bodies on overhead lines under live working conditions efficiently and safely at long distance.
-
Table 1. Thermal properties of wire and some common foreign body material
material thermal conductivity/ (W·m-1· K-1) specific heat capacity/ (J·kg-1· K-1) melting point/ ignition point/ ℃ iron 80 450 1535 pure aluminum 237 910 660 aluminium alloy 100~237 ≈904 500~660 polyethylene 0.32~0.4 2301 < 200 polyvinyl chloride 0.12~0.17 1283~1464 < 200 polyester fiber 0.25 1340 250~270 nylon 0.15~0.50 1500~1930 < 390 rubber < 0.25 1700 350 -
[1] WANG Ch Y. Treatment method of foreign objects on grounding conductor for transmission line[J].Qinghai Electric Power, 2014, 33(1):20-22(in Chinese). [2] LIU M L, YANG H F. Easy to remove floating debris leads the development and application tools[J]. Automation Panorama, 2011(s2):185-187(in Chinese). [3] XU Q. A Multi-function device and application for extra matter dis- posal for transmission lines[J]. Jiangsu Electrical Engineering, 2015, 34(5):15-16(in Chinese). [4] LU D, XIA Zh Q, TANG X M, et al. An improved method and the tool development for live-working demolish of unidentified objects on transmission lines[J]. Zhejiang Electric Power, 2015(11):24-27(in Chinese). [5] ZHANG Zh J, SUN W, FU Zh C. The use of remote bionic operation tool removing foreign bodies in distribution line[J]. Power & Energy, 2012, 33(4):340-343(in Chinese). [6] ZHAO H B, MA X Y. Introduction to remotely controlled burning-off machine for cleaning the foreign matter wrapped on transmission Lines[J]. Sci-Tech Information Development & Economy, 2011, 21(33):194-197(in Chinese). [7] ZHU D Zh, LIU J W, LIANG H J, et al. Development of apparatus for removing foreign bodies based on remote control fire vehicle[J].China Science & Technology Panorama Magazine, 2016(10):49-50(in Chinese). [8] KIM S D, MORCOS M M. Mechanical deterioration of ACSR conductors due to forest fires[J]. IEEE Transastions on Power Delivery, 2003, 18(1):271-276. doi: 10.1109/TPWRD.2002.804011 [9] WANG Zh H, YOU F, ZHANG Y, et al. Analyses on damage behaviors and mechanism of operation properties of typical high-voltage transmission line under intense heat and blaze[J]. Fire Science and Technology, 2015, 34(6):714-718(in Chinese). [10] LAN X J. Laser technology[M].Beijing:Science Press, 1995:239-255(in Chinese). [11] READY J F. Industrial applications of lasers[M]. London, UK:Academic Press, 1997:320-330. [12] READY J F. LIA handbook of laser materials processing[M]. Orlando, USA:Laser Institute of America, 2001:182. [13] LIANG W, CHEN J, LIU Y, et al. A new device for removing foreign matter from overhead lines and its experimental study[J]. China Electric Power(Technology Edition), 2015(9):57-59(in Chinese). [14] LI H Z, CHENG G, LIU Y, et al.The study of laser ablative characteristics of typical wire and foreign body on overhead line[J].High Voltage Engineering, 2015, 41(s1):107-111(in Chinese). [15] HE Zh J, LI Zh B, LIANG P W. ANSYS calculation method of temperature and current-carrying capacity for transmission lines[J]. Zhejiang Electric Power, 2010, 29(8):1-5(in Chinese). [16] HE Y J, ZHU R H, SHEN Zh H, et al. Numerical simulation of laser-induced transient temperature field in cylindrical shell[J]. Laser Technology, 2005, 29(4):386-388(in Chinese). [17] LIU Y F. Study on the current-temperature thermal circuit model of overhead line based on parameter identify[D]. Nanjing: Nanjing University of Science and Technology, 2015: 8-22(in Chinese). [18] ZHANG G Sh. Modern laser manufacturing technology[M].Beijing:Chemical Industry Press, 2006:23-29(in Chinese). [19] REN Zh J, XUE G X. Practical handbook of metallic materials[M]. Nanjing:Jiangsu Science and Technology Press, 2007:1039(in Chinese). [20] JIAO J K, WANG X B, LU H. Analysis of temperature field and thermal stress field in quartz glass heated by laser beams[J]. Laser Technology, 2007, 31(4):427-430(in Chinese). [21] QI L J. Laser deicing theoretical and experimental research for transmission lines[D]. Wuhan: Huazhong University of Science and Technology, 2012: 79-94(in Chinese).