-
VCSEL激光光束服从高斯分布,沿z轴传播的光束近似看成沿z轴传播的基模高斯光束,基模高斯光束可表示为[4]:
$ \begin{array}{c} u{\rm{ }}\left( {x, y, z} \right) = \left\{ {\frac{{{w_0}}}{{w{\rm{ }}(z)}}\exp \left[ { - \frac{{{r^2}}}{{{w^2}\left( z \right)}}} \right]} \right\} \times \\ \exp \left\{ { - {\rm{i}}\left[ {kz - {\rm{arctan}}\left( {\frac{{\lambda z}}{{{\rm{ \mathsf{ π} }}{w_0}^2}}} \right)} \right]} \right\} \times \exp \left[ { - {\rm{i}}\frac{{k{r^2}}}{{2R{\rm{ }}(z)}}} \right] \end{array} $
(1) 式中,等号右边第1项为振幅因子,第2项为纵向相位,第3项为径向相位。k为波数,r为光束到光轴的距离。由该式可得出基模高斯光束的几个关键参量:
$ \begin{array}{c} w{\rm{ }}\left( z \right) = {w_0}\sqrt {1 + {{\left( {\frac{z}{{{z_0}}}} \right)}^2}} = \\ {w_0}\sqrt {1 + {{\left( {\frac{{\lambda z}}{{{\rm{ \mathsf{ π} }}{w_0}^2}}} \right)}^2}} \end{array} $
(2) $ R{\rm{ }}\left( z \right) = z\left[ {1 + {{\left( {\frac{{{z_0}}}{{\lambda z}}} \right)}^2}} \right] = z\left[ {1 + {{\left( {\frac{{{\rm{ \mathsf{ π} }}{w_0}}}{{\lambda z}}} \right)}^2}} \right] $
(3) $ {z_0} = \frac{{{\rm{ \mathsf{ π} }}{w_0}}}{\lambda } $
(4) 式中, w(z)为光斑半径; w0为最小光斑尺寸,即束腰; R(z)为等相面的曲率半径; z0为高斯光束的共焦参量。
定义光束发散角θ为在瑞利距离外,高斯光束振幅缩减为激光中心最大值1/e2处,远场处高斯光束与z轴夹角。定义基模高斯光束光斑半径w(z)振幅按高斯规律减小到中心值的1/e处的r值大小[5], 如图 1所示。
所以发散角与光斑半径为:
$ \theta = \mathop {\lim }\limits_{z \to \infty } \frac{{w{\rm{ }}\left( z \right)}}{{{\rm{ }}z}} = \frac{\lambda }{{{\rm{ \mathsf{ π} }}{w_0}}} $
(5) $ w{\rm{ }}\left( z \right) = {w_0}\sqrt {1 + {{\left( {\frac{z}{{{z_0}}}} \right)}^2}} $
(6) -
通常在计算激光器的光强分布时,所用公式为:
$I\left( {{\theta _x}, {\theta _y}} \right) = {I_0}\exp \left\{ { - 2\left[ {{{\left( {\frac{{{\theta _x}}}{{{\alpha _x}}}} \right)}^{2{G_x}}} + {{\left( {\frac{{{\theta _y}}}{{{\alpha _y}}}} \right)}^{2{G_y}}}} \right]} \right\} $
(7) $ {\alpha _x} = \frac{{{\theta _x}'}}{{\sqrt 2 \sqrt {\ln 2} }} $
(8) $ {\alpha _y} = \frac{{{\theta _y}'}}{{\sqrt 2 \sqrt {\ln 2} }} $
(9) 式中, αx和αy是激光光束发散角,单位为°; θx和θy为发散角变量,θx′, θy′为θx, θy的半峰全宽; Gx,Gy是x,y方向的超高斯因子,Gx和Gy要求必须大于0.01,如果Gx和Gy等于1.0,则产生一个典型的高斯分布。
-
在ZEMAX中通过改变激光器与光纤位置参量,进行光线追迹,查看探测器给出数据,得到随着激光器与光纤距离的增加,系统耦合效率将降低,具体耦合效率随距离的变化, 如图 2所示。
可知当耦合距离达到1mm时,耦合效率低至6.09%,严重影响通信质量,器件几乎不能使用。所以,VCSEL激光器与光纤多使用间接耦合系统。
-
如图 3所示,根据高斯光束光斑半径w(z)随传播距离z的函数,并用MATLAB软件进行处理:
$ w\left( z \right) = {w_0}\sqrt {1 + {{\left( {\frac{{\lambda z}}{{{\rm{ \mathsf{ π} }}{w_0}^2}}} \right)}^2}} $
(10) 为了方便计算,λ取波段840nm~860nm的中值850nm。光束束腰w0取为4.5μm。
根据实际激光器的相关参量,设定激光发散角为20°,光源到光纤端面距离为3mm,分析可得在并行光模块中光束传播到光纤端面时光斑大小为320.92μm。在MATLAB软件中建立两束光束,光束中心间距为250μm,得到两束光束传播到3mm处时的光斑图,如图 4所示。高斯光束光强有效值取为2mW/μm2,单光束对相邻光束的影响如图 5所示。经过计算得到, 来自相邻光束的光强为0.17mW/μm2。
在光接收机部分,光检测器检测到调制后的光信号,通过放大器进入解调器,解调器通过判决光检测器所产生的电信号幅值是比特1还是0,从而完成对光的解调[6]。光检测器检测到的功率大于理论值,探测器接收到的光子数目相比理论值要多,使得探测器产生比特1和0信号的时间相对理论值存在误差,那么解调器进行判决时相对理论值存在差错,最终将导致信号传输过程中产生噪声和误码现象。其次,光斑发散,会使部分能量在耦合时丢失,耦合效率降低。
4×10Gbit/s并行光模块串扰优化设计
Optimal design of crosstalk in 4×10Gbit/s parallel optical modules
-
摘要: 为了对4×10Gbit/s并行光模块光串扰进行优化,采用了ABCD传输矩阵法,结合光纤耦合约束条件以及准直透镜、自聚焦透镜和光纤端面球透镜的理论,设计出两套优化方案。研究了垂直腔面发射激光器光束特性,利用MATLAB进行理论分析,模拟得出光斑半径与发散角的关系,并分析了串扰情况。在ZEMAX非序列模式下完成了光路建模,优化结构中透镜参量以及光纤端面设计,进行了理论分析和实验验证,取得了优化后耦合光斑半径与耦合效率。结果表明,间接耦合优化结构中,到达光纤端面的光斑为53.72μm,耦合效率达到72.59%;而直接耦合优化结构中,到达光纤端面的光斑为3.695μm,耦合效率高达到76.11%,有效地解决了并行光模块之间的光串扰问题。这一结果对光网络信号传输质量优化方面是有帮助的。Abstract: In order to realize crosstalk optimization of 4×10Gbit/s parallel optical modules, by using the ABCD transfer matrix method, combining with the optical fiber coupling constraint and the theory of collimating lens, focus lens and fiber end surface of the ball lens, two sets of optimization schemes were designed. Beam characteristics of vertical cavity surface emitting lasers (VCSEL) were studied, the relationship between the spot radius and divergence angle was simulated by using MATLAB, and crosstalk situation was analyzed. Optical modeling in ZEMAX non-sequential mode was founded, the parameters of lens structure and the design of fiber end face were optimized. After theoretical analysis and experimental verification, the optimized coupling beam radius and coupling efficiency were obtained. The results show that in indirect coupling optimization structure, light spot at the end of fiber is 53.72μm, coupling efficiency is up to 72.59%. In direct coupling optimization structure, light spot at the end of fiber is 3.695μm, and coupling efficiency is up to 76.11%. The design effectively solves the problem of optical crosstalk between parallel optical modules. The study is helpful for the optimization of transmission quality of optical network signal.
-