-
本文中所提出的传感结构如图 1所示。当外部入射光以共振角通过棱镜耦合进该结构时,在Ag和传感介质交界面产生表面等离子共振波。外加磁场H沿垂直于光的入射面方向,从而产生横向磁光克尔效应。
磁光层(Ce:YIG)为各向异性的,所以采用转移矩阵法来计算该结构的反射率,转移矩阵法对于计算多层薄膜结构是非常有效的,YEH和VIŠŇOVSKÝ等人已经对转移矩阵法进行了改进,并形成了具体的过程和方法[14-15]。当外加相反磁场时,所得反射率分别为R(H+)和R(H-),ΔR=R(H+)-R(H-)。当传感介质浓度改变时,其折射率也会随之改变,R的波矢也会相应改变,并且MOSPR谱也会随着入射角偏移。所以该结构的灵敏度F(figure of merit,FOM)为:
$\begin{array}{l} \;\;\;\;\;\;F = \frac{{\partial \Delta \mathit{R}}}{{\partial n}} = \\ {\left[ {\frac{{\partial \left| {R\left( {{H_ + }} \right) - R\left( {{H_ - }} \right)} \right|}}{{\partial \mathit{\theta }}}} \right]_{\theta = {\theta _\mathit{s}}}} \cdot \left( {\frac{{\partial \theta }}{{\partial n}}} \right) \end{array} $
(1) 式中,θ为入射角,θs为固定的工作角,本文中即为ΔR随角度变化最快处所对应的角度,R为光的反射率,H是外加磁场,n是传感介质的折射率,灵敏度分前后两项的乘积计算。
入射光波长是影响该传感结构灵敏度的关键因素,不同波长的光能引起磁光材料不同大小的磁光效应,也会引起介质折射率变化,光强也会受到影响。层厚度是另一个关键影响因素,当材料厚度不同时,对光的损耗和吸收也不同,会影响反射率和场分布。基于上述原因,作者研究最佳的波长和厚度使得该结构的灵敏度达到最大值。
本文中采用有限元法(finite element method,FEM)对提出的结构进行了物理场仿真,然后采用转转移矩阵法来计算该结构的反射率,进而得出灵敏度。通过系统化地数值仿真得到本次设计的最佳波长和厚度(最高的灵敏度时的波长和厚度)。最后对该结构的最高灵敏度的适用测量范围进行了仿真分析。
基于磁光波导的液体折射率传感特性研究
Highly sensitive refractive index sensor based on magneto-optical waveguide
-
摘要: 为了对溶液折射率进行精确测量和传感,采用转移矩阵法对Ce:YIG/Ag/liquid 3层基于磁光表面等离子共振的结构与棱镜组成耦合系统进行了数值计算,并用有限元法进行了模拟仿真。由低损耗的Ag和强磁光性的Ce:YIG组成的结构在入射光波长为980nm时,灵敏度达到4.082/RIU(溶液折射率n=1.330~1.340)。结果表明,与其它传统的表面等离子共振传感结构相比,本文中提出的折射率传感器的灵敏度大大提高。该结构在实际应用中可以更加简便地探测溶液的折射率。Abstract: In order to measure and detect refractive index of solution, by using transfer matrix method, the coupling system of Ce:YIG/Ag/liquid three-layer structure and prism based on magneto optic surface plasma resonance was studied. Numerical calculation was carried out and finite element method was used to simulate. For the structure composed of low loss Ag and strong magneto optical Ce:YIG, its sensitivity is to 4.082/RIU, solution refractive index is 1.330~1.340 when incident light wavelength is 980nm. The results show that compared with other conventional surface plasma resonance sensing structures, the sensitivity of the refractive index sensor presented in this paper is greatly improved. The structure can be used to detect refractive index of the solution more easily.
-
[1] CHENG Y Y, SU W K, LIOU J H, et al. Application of a liquid sensor based on surface plasmon wave excitation to distinguish methyl alcohol from ethyl alcohol [J]. Optical Engineering, 2000, 39 (1):311-314. [2] LIN W B, NINCOLE J R, CHOVLON J M, et al. Optical fiber as a whole surface probe for chemical and biological application [ J].Sensors and Actuators, 2001, B74(1/3):207-211. [3] SLAVIK R, HOMOLA J, CTYROK J, et al. Novel spectral fiber sensor based on surface plasmon resonance [J]. Sensors and Actuators, 2001, B74(1/3):106-111. [4] NOTCOVICH A G, ZHUK V, LIPSON S G. Surface plasmon resonance imaging [J]. Applied Physics Letters, 2000, 39 (1):1665-1667. [5] PILIARIK M, HOMOLA J. Surface plasmon resonance (SPR) sensors: approaching their limits[J]. Optics Express, 2009, 17(19):16505-16517. doi: 10.1364/OE.17.016505 [6] ARMELLES G, CEBOLLADA A, GARCÍA-MARTÍN A, et al. Magnetoplasmonics: combining magnetic and plasmonic functionalities[J]. Advanced Optical Materials, 2013, 1(1):10-35. [7] SEPULVEDA B, CALLE A, LECHUGA L, et al. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor[J]. Optics Letters, 2006, 31(8):1085-1087. doi: 10.1364/OL.31.001085 [8] BONOD N, REINISCH R, POPOV E, et al. Optimization of surface-plasmon-enhanced magneto-optical effects[J]. Journal of the Optical Society of America, 2004, B21(4):791-797. [9] LAHAV A, AUSLENDER M, ABDULHALIM I. Sensitivity enhancement of guided-wave surface-plasmon resonance sensors[J]. Optics Letters, 2008, 33(21):2539-2541. doi: 10.1364/OL.33.002539 [10] QIN J, DENG L J, XIE J L, et al. Highly sensitive sensors based on magneto-optical surface plasmon resonance in Ag/Ce:YIG heterostructures[J]. AIP Advances, 2015, 5(1):017118. doi: 10.1063/1.4905949 [11] YANG Q, XIE K, JIANG X D, et al. Review of the research for YIG film materials based on the magneto-optical waveguide[J]. Magnetic, Material, Devices, 2006, 37(6):13-16 (in Chinese). [12] BI L, HU J, JIANG P, et al. On-chip optical isolation in monolithically integrated non-reciprocal optical resonators[J]. Nature Photonics, 2011, 5(12):758-762. doi: 10.1038/nphoton.2011.270 [13] REGATOS D, SEPúLVEDA B, FARIN~A D, et al. Suitable combination of noble/ferromagnetic metal multilayers for enhanced magneto-plasmonic biosensing[J]. Optics Express, 2011, 19(9): 8336-8346. doi: 10.1364/OE.19.008336 [14] YEH P. Optics of anisotropic layered media: a new 44 matrix algebra [J]. Surface Science, 1980, 96(1/3):41-53. [15] VIŠŇOVSKÝ Š. Magneto-optical ellipsometry[J]. Czechoslovak Journal of Physics, 1986, B36(5):625-650.