-
根据Kurtz-Perry晶体粉末倍频原理[3],基频光为ω的光源对晶体粉末检测时得到2ω的倍频信号光,对于相位匹配材料和非相位匹配材料所探测到的理论值可以做如下表示。
(1) 相位匹配晶体粉末二次谐波强度:
$ \begin{array}{l} {I_{2\omega }} = \frac{{32{\rm{ \mathsf{ π} }}}}{c}{\left[ {\frac{{64{\rm{ \mathsf{ π} }}{I_\omega }}}{{\lambda {{({n_\omega } + 1)}^2}({n_{2\omega }} + 1)}}} \right]^2} \times \\ \;\;\;\;\;\;\;\;\;\;\;\;\;{d_{2\omega }}^2\left( {\frac{{{{\rm{ \mathsf{ π} }}^2}}}{4}L \mathit{\Gamma} } \right) \end{array} $
(1) $ {I_{2\omega }} \propto {d_{2\omega }}^2\left( {\frac{{{{\rm{ \mathsf{ π} }}^2}}}{4}L\mathit{\Gamma} } \right) $
(2) 式中,Γ=2lc(θ-θm)sinθm,且r$ \gg $Γ/sinθm, θ是入射角,θm为相位匹配角,lc表示相干长度,r为粉末颗粒平均半径,d2ω是相位匹配粉末材料有效非线性系数,c是光速,λ为基频光波长,Iω是基频光强度,nω和n2ω表示基频光和倍频光在材料中的折射率,L为样品厚度。
(2) 非相位匹配晶体粉末二次谐波强度:
$ \begin{array}{l} {I_{{\rm{n}}, 2\omega }} \approx \frac{{32{\rm{ \mathsf{ π} }}}}{c}{\left[ {\frac{{64{\rm{ \mathsf{ π} }}{I_\omega }}}{{\lambda {{\left( {{n_\omega } + 1} \right)}^2}\left( {{n_{2\omega }} + 1} \right)}}} \right]^2} \times \\ \;\;\;\;\;\;\;\;{d_{{\rm{n}}, 2\omega }}^2\left[ {L\frac{{{l_{\rm{c}}}^2}}{r}{\rm{si}}{{\rm{n}}^2}\left( {\frac{1}{2}{\rm{ \mathsf{ π} }}\frac{r}{{{l_{\rm{c}}}}}} \right)} \right] \end{array} $
(3) $ {I_{{\rm{n}}, 2\omega }} \propto {d_{{\rm{n}}, 2\omega }}^2\left[ {L\frac{{{l_{\rm{c}}}^2}}{r}{\rm{si}}{{\rm{n}}^2}\left( {\frac{1}{2}{\rm{ \mathsf{ π} }}\frac{r}{{{l_{\rm{c}}}}}} \right)} \right] $
(4) 式中, dn, 2ω为非相位匹配粉末材料有效非线性系数。
经计算,对于倍频信号强度与粉末颗粒度大小的关系如(2)式所示, 对于相位匹配粉末材料,r < 5lc倍频信号强度随着粒度增加而增加,在r=5lc时达到最大值,r > 5lc后基本保持不变。而对于非相位匹配粉末材料,见(4)式, 在r < 1.5lc时倍频信号强度随着粒径增加而增加,在r=1.5lc时达到最大值,当r > 1.5lc时,倍频信号强度随着粒子尺寸的增加反而减小。
双波长粉末倍频检测系统研究
Study on dual wavelength powder frequency doubling detection system
-
摘要: 为了测定粉末材料的倍频特性,根据Kurtz-Perry粉末倍频效应理论,采用光参量振荡技术,获取了130mJ@1064nm和20mJ@1570nm的双波长调Q激光输出,并进行了理论分析和实验验证。实现了粉末样品的1064nm和1570nm双波长倍频测试,解决了单一波长测试时晶体粉末材料对倍频信号波长的吸收而导致难以测得倍频信号的问题,有效非线性系数测试灵敏度达到0.46pm/V。结果表明,KTP粉末样品倍频信号变化趋势与理论相吻合,该系统对晶体的非线性检测运行稳定可靠,测试简单方便快捷。Abstract: In order to measure the frequency doubling characteristics of powder materials, according to the theory of Kurtz-Perry powder frequency doubling effect and the theory of optical parametric oscillation, dual wavelength Q-switched laser output of 130mJ@1064nm and 20mJ@1570nm was obtained. After theoretical analysis and experimental verification, the 1064nm and 1570nm dual wavelength frequency doubling test of powder sample was realized. The problem, that the absorption of crystal powder material to the wavelength of frequency doubling signal makes it difficult to measure the frequency doubling signal when testing the single wavelength, was solved. The results show that the test sensitivity of effective nonlinear coefficient reaches 0.46pm/V. the variation trend of frequency doubling signal of KTP powder samples is consistent with the theory. The system is stable, simple, convenient and reliable for nonlinear detection of crystals.
-
[1] NIKOGOSYAN D N. Nonlinear optical crystals: a complete survey[M]. Berlin, Germany: Springer Science & Business Media, 2006:403-405. [2] JERPHAGNON J, KURTZ S K. Maker fringes: a detailed comparison of theory and experiment for isotropic and uniaxial crystals[J]. Journal of Applied Physics, 1970, 41(4): 1667-1681. doi: 10.1063/1.1659090 [3] KURTZ S K, PERRY T T. A powder technique for the evaluation of nonlinear optical materials[J]. Journal of Applied Physics, 1968, 39(8): 3798-3813. doi: 10.1063/1.1656857 [4] DOUGHERTY J P, KURTZ S K. A second harmonic analyzer forthe detection of non-centrosymmetry[J]. Journal of Applied Crystallography, 1976, 9(2): 145-158. doi: 10.1107/S0021889876010789 [5] KIGUCHI M, KATO M, KUMEGAWA N, et al. Technique for eva-luating second-order nonlinear optical materials in powder form[J]. Journal of Applied Physics, 1994, 75(9): 4332-4339. doi: 10.1063/1.355976 [6] LIU G X, LU Y, JIN X. Study on an improved powder SHG technique[J]. Journal of Inner Mongolia Normal University(Natural Science Edition), 2009, 38(4): 407-410(in Chinese). [7] LI B X, WEI Y, HUANG C, et al. Research on testing the nonlinear optical performance of nonlinear optical materials based on the effect of second-harmonic generation[J]. Spectroscopy and Spectral Analysis, 2014, 34(1): 6-11. [8] ARAMBURU I, ORTEGA J, FOLCIA C L, et al. Second harmonic generation by micropowders: a revision of the Kurtz-Perry method and its practical application[J]. Applied Physics, 2014, B116(1): 211-233. [9] ZENG J B, CHEN H X, LIANG W G, et al. Research of optical pa-rametric oscillation of periodically poled MgO-doped LiNbO3 crystal[J]. Laser Technology, 2016, 40(3): 409-412(in Chines). [10] CHEMLA D S. Nonlinear optical properties of organic molecules and crystals[M].Amsterdam, Netnerlands: Amsterdam Elsevier, 2012:138-143. [11] KHOO I C, WU S T. Optics and nonlinear optics of liquid crystals[M].Singapour City, Singapour: Singapour World Scientific, 1993: 82-86. [12] PAN Y Sh, YAN Zh A, GUO W J, et al. Pulse laser injection seed-ed state detector and experimental research[J]. Laser Technology, 2016, 40(2): 153-156(in Chinese). [13] WANG B, REN G, LI T, et al. Experimental study of a kalium titanyl arsenate optical parametric oscillator in the mid-infrared band[J]. Laser Technology, 2007, 31(3): 225-227(in Chinese). [14] WANG L, WU X Y, LI Zh, et al. Progress of the nonlinear mid-infrared optical crystal and device of the parametric oscillator[J]. Laser Technology, 2011, 35(4): 434-439(in Chinese). [15] ZHENG Q, SUN J. Laser research of output wavelength controlled common aperture 0.532μm/1.064μm/3.9μm[J]. Laser Technology, 2017, 41(1): 10-13(in Chinese).