-
飞秒时间分辨质谱技术的原理如图 1所示。首先运用两束超短飞秒激光脉冲:抽运光将分子从电子基态激发到电子激发态或里德堡态上,制备随时间演化量子波包; 探测光用来电离所制备的激发态或里德堡态上的分子。抽运光和探测光与样品发生作用产生的离子在电场中进行加速,再通过一段自由飞行区最终达到探测器,被光电倍增管(photomultiplier tube,PMT)和示波器所组成的探测器探测。图中S1和S2分别表示分子第一、第二单重激发态,Δt为抽运光和探测光之间的延迟时间。
抽运激光选择不同的激发波长来选择性地激发感兴趣的电子激发态/里德堡态,制备随时间演化量子波包,当分子被抽运激光激发到特定的电子激发态/里德堡态后,会通过不同的通道发生衰减,探测激光在不同的抽运探测延迟时间内探测分子的衰减过程。这些衰减过程一般都发生在皮秒甚至在飞秒的时间尺度内,为了能够实时跟踪激发态超快衰减过程,并观测激发态在极短的时间内发生的动力学过程,抽运激光脉冲和探测激光脉冲之间要有能够控制在皮秒甚至飞秒时间范围内的一定的延迟时间Δt。随着精密位移平台技术的发展,时间延迟控制在几个飞秒的时间精度成为可能。目前通过精密位移平台可以很容易达到很高精度的位移扫描。因此,飞秒时间分辨的实验中通过精密位移平台技术精密控制抽运光和探测光之间的光程差来实现飞秒或皮秒量级的时间延迟。
抽运光、探测光和样品分子发生作用产生离子以后,产生的离子或电子通过精细设计的极板产生的电场进行加速。加速离子的电场一般由几块极板所组成,在极板上加电压后,极板有一定的电场强度。第1块极板加较高的电压,接下来的极板加比前面一块极板较小的电压,产生拉出场和加速场,将离子从反应区域中拉出并对离子进行加速。在外电场中加速后,各种离子都获得一定的动能E:
$ E = m{v^2}/2 $
(1) 由此可见,在外电场的作用下, 加速后的质量m不同的离子会获得不同的速率v。因此,质量不同的离子以不同初速度进入无场区进行自由飞行:
$ v = \sqrt {2E/m} $
(2) 质量不同的离子从进入长度为L的无场自由飞行区域, 到达探测器的自由飞行时间为:
$ T = L/v = L\sqrt {m/\left( {2E} \right)} $
(3) 由此可见,离子达到探测器的时间(离子在探测器上出现的时间)T和m1/2成正比。具有特定能量E,而荷质比m/z(m表示带电体的质量,z表示带电体的电荷量)不同的离子在外电场作用下被加速后,会获得不同的速度。由于质量不同的离子以不同的初速度进入无场自由飞行区域,经过一定长度的无场自由飞行区飞行之后,前后达到离子接收器,在不同时间被探测器探测。因此,时间分辨质谱测量不同离子的飞行时间,可以分辨不同的离子。而通过改变抽运激光脉冲和探测激光脉冲之间的延迟,记录同一个离子不同抽运探测时间延迟下的质谱,离子在不同抽运探测时间延迟下的质谱反映激发态布居数随时间演化。
在飞秒时间分辨质谱实验中,由于激光脉冲的零点和飞行时间零点之间可能存在差异、激光脉冲具有一定的宽度,这些因素都会影响分子飞行时间的测量。考虑到这些因素对实验结果的影响,对未知分子进行飞行时间测量之前,必须对飞行时间进行校准。实验中,通常首先对已知分子的飞行时间进行测量,参考已知离子的飞行时间对飞行时间进行校准,再对未知分子进行测量,并对未知分子进行准确标定。校准公式如下:
$ T = a{m^{1/2}} + b $
(4) 式中,a和b是未知参量,需要先求出未知参量的值来得到校准公式。因此,在实验中,通常把两个或两个以上已知离子飞行时间T和m1/2的数据代入(4)式得到未知参量a和b,然后根据实验中测得的未知离子的飞行时间求出未知离子质量。
飞秒时间分辨质谱实验中的质谱分辨率是一个非常重要的参量,飞秒时间分辨质谱的分辨率M可以用以下公式表示:
$ m = \left( {2E} \right){\left( {T/L} \right)^2} $
(5) $ \Delta m = \left( {2E} \right)2T\Delta T/{L^2} $
(6) $ M = m/\Delta m = T/\left( {2\Delta T} \right) $
(7) 式中,m和Δm分别是质谱上的离子质量及其半峰全宽,T是离子自由飞行时间, ΔT为离子飞行时间谱线的半峰全宽,L为飞行距离。由此可见,飞秒时间分辨质谱的分辨率是M在数值上的体现, M的数值越小,说明质谱分辨率就越低,反之,质谱分辨率越高。很多因素都有可能影响质谱分辨率。设计质谱仪时,为了达到较高的质谱分辨率,可以尝试使用反射式的飞行时间质谱技术。反射式飞行时间质谱仪通过增加自由飞行距离来增加离子的自由飞行时间T,从而有效提高质谱分辨率。当飞行时间质谱仪已设计好、各部分的几何长度已确定时,没办法改变飞行时间,这时可以改善电场的设计、调节拉出场和加速场的强度比来改善空间聚焦条件,有效提高质谱分辨率。飞秒时间分辨质谱跟其它质谱一样具有分析质量范围宽、收集效率高等优点。
在飞秒时间分辨实验中, 光源飞秒抽运光和飞秒探测光脉冲都是高斯脉冲,具有一定的脉冲宽度,除此之外,实验中用到的光电倍增管等光电转换器件都不可能瞬间响应,都有一定的仪器响应时间,因此,在实验中所记录的不同时刻的离子/电子信号强度Isig为激发态布居数随时间变化的真实信号和抽运光与探测光脉冲的相关函数的卷积。
如果假设分子吸收一个或多个光子激发到激发态A,由于激发态不稳定,被光激发的激发态A会衰减,A态衰减到另外一个激发态B,B态也有可能衰减到C态,第1步的速度常数为k1,第2步的速度常数为k2,这样一个(A→B→C)反应过程的速率方程如下:
$ \frac{{{\rm{d}}A\left( t \right)}}{{{\rm{d}}t}} = - {k_1}A\left( t \right) \Rightarrow A\left( t \right) = A\left( {{t_0}} \right){{\rm{e}}^{ - {k_1}t}} $
(8) $ \begin{array}{*{20}{c}} {\frac{{{\rm{d}}B\left( t \right)}}{{{\rm{d}}t}} = {k_1}A\left( t \right) - {k_2}B\left( t \right) \Rightarrow }\\ {B\left( t \right) = \frac{{{k_1}A\left( {{t_0}} \right)}}{{{k_1} - {k_2}}}\left( {{{\rm{e}}^{ - {k_2}t}} - {{\rm{e}}^{ - {k_1}t}}} \right)} \end{array} $
(9) $ {k_2} = 0 \Rightarrow B\left( t \right) = A\left( {{t_0}} \right)\left( {1 - {{\rm{e}}^{ - {k_1}t}}} \right) $
(10) $ \begin{array}{*{20}{c}} {\frac{{{\rm{d}}C\left( t \right)}}{{{\rm{d}}t}} = - {k_2}B\left( t \right) \Rightarrow C\left( t \right) = \frac{{{k_1}{k_2}}}{{{k_1} - {k_2}}}A\left( {{t_0}} \right) \times }\\ {\left[ {\frac{1}{{{k_2}}}\left( {1 - {{\rm{e}}^{ - {k_2}t}}} \right) - \frac{1}{{{k_1}}}\left( {1 - {{\rm{e}}^{ - {k_1}t}}} \right)} \right]} \end{array} $
(11) 由此可见,激发态布居数随时间变化为一个单指数衰减、单指数上升或单指数衰减加单指数上升函数。在时间分辨质谱实验中,飞秒抽运激光脉冲和探测激光脉冲都是高斯脉冲,由于两个高斯脉冲的相关函数仍然是一个高斯函数[8],飞秒抽运光和探测光的相关函数仍然为一个高斯函数。因此,实验中先测得抽运光和探测光的相关函数,再由测得的不同抽运探测时间延迟下的质谱信号通过指数函数和高斯函数的卷积公式进行拟合,就可以获得分子激发态或里德堡态准确的寿命:
$ \begin{array}{*{20}{c}} {{I_{{\rm{sig}}}} = \sum\limits_i {{A_i}\exp \left( { - t/{\tau _i}} \right)} \otimes }\\ {\frac{1}{{\sigma \sqrt {2{\rm{ \mathsf{ π} }}} }}\exp \left[ { - \frac{{{{\left( {t - {t_0}} \right)}^2}}}{{2{\sigma ^2}}}} \right]} \end{array} $
(12) 式中,Ai是振幅,τi是寿命,σ是相关函数的半峰全宽,t0为零点时间,⊗表示卷积运算。
飞秒时间分辨质谱技术可以测得不同抽运探测时间延迟下分子电子激发态电离或解离而来的离子质谱,由不同抽运探测时间延迟下质谱信号强弱的变化反映激发态布居数随时间变化。从分子激发态布居数随时间变化的信号可反演出分子激发态的动力学信息。因此,时间分辨质谱技术在研究分子电子激发态非绝热动力学过程的研究、里德堡态研究、过渡态研究中发挥着很重要的作用。下面以几个方面介绍飞秒时间分辨质谱在超快动力学中的应用进展。
飞秒时间分辨质谱技术在超快动力学中的应用进展
Technology of femtosecond time resolution mass spectroscopy and its applications in ultrafast dynamics
-
摘要: 飞秒时间分辨质谱技术是飞秒抽运-探测技术与飞行时间质谱技术的结合。可以测得在不同抽运-探测时间延迟下,分子电子激发态电离或解离而来的离子质谱; 不同抽运-探测时间延迟下,质谱信号强弱的变化反映了激发态布居数的时态信息; 给出了分子激发态和里德堡态中准确的寿命信息、分子激发态势能面非绝热耦合信息以及分子过渡态信息。介绍了飞秒时间分辨质谱技术在分子激发态研究中的最新应用进展,以及在里德堡态解离、异构化、内转换、系间交叉等超快动力学过程研究中的最新进展。指出飞秒时间分辨质谱技术将在一些新现象的研究中发挥重要的作用。Abstract: Femtosecond time-resolved mass spectrometry is the combination of femtosecond pump-probe technique and flight time mass spectrometry. By the technology, ion mass spectra from ionization or dissociation of the molecules excited state can be measured under different pump-probe time delays. The temporal information of the population of the excited states varies with the change of the strength of mass spectra. Some information is given, such as:the accurate lifetime of the excited state and Rydberg state, coupling information of potential energy surface and non adiabatic of molecular excited state, and excessive state information. The application of femtosecond time-resolved mass spectrometry in ultrafast dynamics process is introduced, such as:recent advances of molecular excited states and the latest progress of Rydberg state for dissociation, isomerization, conversion, and system cross. And it is pointed out that femtosecond time-resolved mass spectrometry will play an important role in the study of some new phenomena.
-
Key words:
- laser technique /
- ultrafast dynamics /
- mass spectroscopy /
- femtosecond time resolution
-
[1] EYRING H. The activated complex in chemical reactions. Journal of Chemical Physics, 1934, 3(2):107-115. [2] ZEWAIL A H. Femtochemistry: Atomic-scale dynamics of the chemical bond. The Journal of Physical Chemistry, 2000, A104(24): 5660-5694. [3] KHUNDKAR L R, ZEWAIL A H. Picosecond mpi mass spectrometry of CH3I in the process of dissociation. Chemical Physics Letters, 1987, 142(6): 426-432. [4] CORRALES M E, LORIOT V, ZEWAIL A H. Structural dynamics effects on the ultrafast chemical bond cleavage of a photodissociation reaction. Physical Chemistry Chemical Physics, 2013, 16(19):8812-8818. [5] YU H. Study on measurement of femtosecond laser pulse width. Laser Technology, 2013, 37(5):679-681(in Chinese). [6] YANG M H, JIN Q, LIU J S, et al. CO molecular orientation controlled by combination of chirped THz pulse and femtosecond laser pulse. Laser Technology, 2015, 39(6):735-740(in Chinese). [7] VALDMANIS J A, FORK R L, GORDON J P.Generation of optical pulse as short as 27 femtoseconds directly from alaser balancing self -phase modulati on group -velocity dispersion saturable absorption, and saturablegain.Optics Letters, 1985, 10(3):131-133. [8] HE Y X, MU B L, LI J, et al.Relationship between Gaussian beam quality and wavefront aberration. Laser Technology, 2014, 38(6):747-752(in Chinese). [9] LUDOWISE P, BLACKWELL M, CHEN Y. Femtosecond time-resolved mass and photoelectron spectroscopic study of OC10 photodissociation. Coherent energy transfer in a stepwise reaction. Chemical Physics Letters, 1997, 273(3/4):211-218. [10] HO J W, CHEN W K, CHENG P Y. A direct observation of a concerted two-bond breaking reaction. Journal of the American Chemical Society, 2007, 129(25): 3748-3785. [11] HO J W, CHEN W K, CHENG P Y. Unraveling complex three-body photodissociation dynamics of dimethyl sulfoxide: a femtosecond time-resolved spectroscopic study. Journal of Physical Chemistry, 2008, A112(40): 10453-10468. [12] CHEN W K, HO J W, CHENG P Y. Ultrafast photodissociation dynamics of acetone at 195nm: Ⅱ initial state, intermediate, and product temporal evolutions by femtosecond mass-selected multiphoton ionization spectroscopy. Journal of Physical Chemistry, 2005, A109(34): 6805-6817. [13] CHEN W K, CHENG P Y. Ultrafast photodissociation dynamics of acetone at 195nm: Ⅱ unraveling complex three-body dissociation dynamics by femtosecond time-resolved photofragment translational spectroscopy. Journal of Physical Chemistry, 2005, A109(34): 6818-6829. [14] GITZINGER G, CORRALES M E, LORIOT V. A femtosecond velocity map imaging study on B-band predissociation in CH3I. Ⅰ. The band origin. The Journal of Chemical Physics, 2010, 132(23): 234313. doi: 10.1063/1.3455207 [15] ZHANG R R, SHEN H, QIN C C, et al. Ultrafast dissociation dynamics of acrylic acid studied with femtosecond pump-probe technique. Acta Physico-Chimica Sinica, 2012, 28(3):522-527. [16] XU Y Q, QIU X J, ABULIMITI B, et al. Energy transfer of ethyl iodine studied by time-resolved photoelectron imaging. Chemical Physics Letters, 2012, 554(12):53-56. [17] LIU Zh M, WANG Y M, ZHANG B, et al. Photodissociation dynamics of 2-iodotoluene investigated by femtosecond time-resolved mass spectrometry. Chinese Journal of Chemical Physics, 2016, 29(1):53-58. [18] POULLAIN S M, SAMARTZIS P C, KITSOPOULOS T N. New insights into the photodissociation of methyl iodide at 193nm: stereodynamics and productbranching ratios. Physical Chemistry Chemical Physics, 2015, 17(44): 29958-29968. doi: 10.1039/C5CP04850H [19] ABULIMITI B, QIU X J, DING Z H, et al. Studies on ultrafast dynamic of 3-picoline with femtosecond time-resolved photoelectron imaging. Acta Physico-Chimica Sinica, 2014, 30(1): 22-27. [20] NOLLER B, POISSON L, MAKSIMENKA R, et al. Femtosecond dynamics of isolated phenylcarbenes. Journal of the American Chemical Society, 2008, 130(45): 14908-14909. doi: 10.1021/ja804133c [21] FUSS W, SCHMID W E, TRUSHIN S A. Ultrafast dynamics of cyclohexene and cyclohexene-d10 excited at 200nm. Journal of the American Chemical Society, 2001, 123(33): 7101-7108. [22] FUSS W, SCHMID W E, TRUSHIN S A. Time-resolved dissociative intense-laser field ionization for probing dynamics: Femtosecond photochemical ring opening of 1, 3-cyclohexadiene. The Journal of Chemical Physics, 2000, 112(19): 8347-8362. doi: 10.1063/1.481478 [23] WU G R, NEVILLE S P, SCHALK O. Excited state non-adiabatic dynamics of pyrrole: A time-resolved photoelectron spectroscopy and quantum dynamics study. The Journal of Chemical Physics, 2015, 142(7): 074302. doi: 10.1063/1.4907529 [24] MONTERO R, CONDE A P, OVEJAS V, et al. Ultrafastphotophysics of the isolated indole molecule.Journal of Physical Chemistry, 2012, A116(11): 2698-2703. [25] LIU Y Z, TANG B F, SHEN H, et al. Probing ultrafast internal conversion of o-xylene via femtosecond time-resolved photoelectron imaging. Optics Express, 2010, 18(10): 5791-5801. [26] DING Z H, QIU X J, XU Y Q, et al.Ultrafast internal conversion dynamics of benzyl chloride by femtosecond time-resolved photoelectron imaging. Acta Physico-Chimica Sinica, 2012, 28(12): 2761-2766. [27] HORIO T, SPESYVTSEVJ R, SUZUKI T. Full observation of ultrafast cascaded radiationless transitions from S2 state of pyrazine using vacuum ultraviolet photoelectron imaging.The Journal of Chemical Physics, 2016, 145(4): 044306. [28] SUZUKI T, WANG L, KOHGUCHI H. Femtosecond time-resolved photoelectron imaging on ultrafast electronic dephasing in an isolated molecule. The Journal of Chemical Physics, 1999, 111(11): 4859-4861. doi: 10.1063/1.479822 [29] QIU X J, QIN C C, WANG J, et al.Direct imaging of the electronic dephasing in benzene: Experimental evidence for ultrafast intersystem crossing of T3←S2 states. Physical Review, 2012, A86(3): 032505. [30] LUCAS M, LIU Y, BRYANT R, et al. Vacuum ultraviolet photodissociation dynamics of methanol at 121.6. Chemical Physics Letters, 2015, 619(1):18-22. [31] FARMANARA P, STERT V, RADLOFF W. Ultrafast photodissociation dynamics of acetone excited by femtosecond 155nm laser pulses. Chemical Physics Letters, 2000, 320(6): 697-702. [32] TIMMERS H, SHIVARAM N, SANDHU A. Ultrafast dynamics of neutral superexcited oxygen: A direct measurement of the competition on between autoionization and predissociation. Physical Review Letters, 2012, 109(17): 173001. doi: 10.1103/PhysRevLett.109.173001 [33] SPESYVTSEVJ R, HORIO T, SUZUKI T. Excited-state dynamics of furan studied by sub-20fs time-resolved photoelectron imaging using 159nm pulses. The Journal of Chemical Physics, 2015, 143(1): 014302.