-
本文中所涉及到的为不可压缩连续流体、流体的黏壁效应、流体层流紊流速度的选择,故涉及到流体流动的连续性方程、伯努利方程和动量守恒方程,以及科安达效应和雷诺数的应用。
-
$ \frac{{\partial \rho }}{{\partial t}} + \frac{{\partial (\rho {\mathit{\boldsymbol{u}}})}}{{\partial x}} + \frac{{\partial (\rho {\mathit{\boldsymbol{v}}})}}{{\partial y}} + \frac{{\partial (\rho {\mathit{\boldsymbol{w}}})}}{{\partial z}} = 0 $
(1) 式中, ρ为流体的密度,t为时间,u, v, w为在x, y, z方向上的速度矢量[12]。
-
$ {z_1} + \frac{{{p_1}}}{{\rho g}} + \frac{{{\alpha _1}v_1^2}}{{2g}} = {z_2} + \frac{{{p_2}}}{{\rho g}} + \frac{{{\alpha _2}v_2^2}}{{2g}} + h $
(2) 式中, z1,z2表示在不同位置单位重量流体所具有的位能,几何意义为位置水头;p1,p2表示在不同位置单位重量流体所具有的压强;v1,v2表示不同位置流速;g, h分别表示重力加速度和水头损失。
-
考虑到水的粘性,在空间直角坐标系中,粘性不可压缩流体的动量守恒方程,即是纳维-斯托克斯方程(Navier-Stokes, N-S)方程[13]:
$ \left\{ \begin{array}{l} \frac{{\partial {\mathit{\boldsymbol{u}}}}}{{\partial t}} + {\mathit{\boldsymbol{u}}}\frac{{\partial {\mathit{\boldsymbol{u}}}}}{{\partial x}} + {\mathit{\boldsymbol{u}}}\frac{{\partial {\mathit{\boldsymbol{u}}}}}{{\partial y}} + {\mathit{\boldsymbol{w}}}\frac{{\partial {\mathit{\boldsymbol{u}}}}}{{\partial z}} = \\ - \frac{{1\partial p}}{{\rho \partial x}} + \gamma (\frac{{{\partial ^2}{\mathit{\boldsymbol{u}}}}}{{\partial {x^2}}} + \frac{{{\partial ^2}{\mathit{\boldsymbol{u}}}}}{{\partial {y^2}}} + \frac{{{\partial ^2}{\mathit{\boldsymbol{u}}}}}{{\partial {z^2}}}) + {F_x}\\ \frac{{\partial {\mathit{\boldsymbol{v}}}}}{{\partial t}} + {\mathit{\boldsymbol{u}}}\frac{{\partial {\mathit{\boldsymbol{v}}}}}{{\partial x}} + {\mathit{\boldsymbol{v}}}\frac{{\partial {\mathit{\boldsymbol{v}}}}}{{\partial y}} + {\mathit{\boldsymbol{w}}}\frac{{\partial {\mathit{\boldsymbol{v}}}}}{{\partial z}} = \\ - \frac{1}{\rho }\frac{{\partial p}}{{\partial y}} + \gamma (\frac{{{\partial ^2}{\mathit{\boldsymbol{v}}}}}{{\partial {x^2}}} + \frac{{{\partial ^2}{\mathit{\boldsymbol{v}}}}}{{\partial {y^2}}} + \frac{{{\partial ^2}{\mathit{\boldsymbol{v}}}}}{{\partial {z^2}}}) + {F_y}\\ \frac{{\partial {\mathit{\boldsymbol{w}}}}}{{\partial t}} + {\mathit{\boldsymbol{u}}}\frac{{\partial {\mathit{\boldsymbol{w}}}}}{{\partial x}} + {\mathit{\boldsymbol{v}}}\frac{{\partial {\mathit{\boldsymbol{w}}}}}{{\partial y}} + {\mathit{\boldsymbol{w}}}\frac{{\partial {\mathit{\boldsymbol{w}}}}}{{\partial z}} = \\ - \frac{1}{\rho }\frac{{\partial p}}{{\partial z}} + \gamma (\frac{{{\partial ^2}{\mathit{\boldsymbol{w}}}}}{{\partial {x^2}}} + \frac{{{\partial ^2}{\mathit{\boldsymbol{w}}}}}{{\partial {y^2}}} + \frac{{{\partial ^2}{\mathit{\boldsymbol{w}}}}}{{\partial {z^2}}}) + {F_z} \end{array} \right. $
(3) 式中, γ表示运动粘性系数; Fx, Fy, Fz分别表示体积力F在3个坐标轴上的分量。
但是由于直接求解上述方程有一定的难度,故运用雷诺方程,采用时间平均分配的求解方式。对于不可压缩流体的标准k-ε模型,湍动能方程和湍流耗散方程分别为[14]:
$ \begin{array}{l} \frac{{\partial (\rho k)}}{{\partial t}} + \frac{{\partial (\rho k{\mathit{\boldsymbol{u}}})}}{{\partial {x_i}}} = \frac{\partial }{{\partial {x_i}}}[(\mu + \frac{{{u_t}}}{{{\sigma _k}}})\frac{{\partial k}}{{\partial x}}] + \\ \;\;\;\;\;\;\;{G_1} + {G_2} - \rho \varepsilon - Y + {S_k} \end{array} $
(4) $ \begin{array}{l} \frac{{\partial (\rho \varepsilon )}}{{\partial t}} + \frac{{\partial (\rho \varepsilon {\mathit{\boldsymbol{u}}})}}{{\partial x}} = \frac{\partial }{{\partial {x}}}[(\mu + \frac{{{u_t}}}{{{\sigma _\varepsilon }}})\frac{{\partial k}}{{\partial x}}] + \\ \;\;\;\;{G_{1\varepsilon }}\frac{\varepsilon }{k}({G_1} + {C_{3\varepsilon }}{G_2}) - {C_{2\varepsilon}} \rho \frac{{{\varepsilon ^2}}}{k} + {S_\varepsilon } \end{array} $
(5) 式中, 湍流粘度ut=ρCμk/ε,k是湍动能,ε是耗散率,Cμ是湍流模型中的一个经验常数,约为0.09;G1为平均速度梯度引起的湍动能的产生项;G2为浮力引起的湍动能的产生项;Y代表不可压缩湍流中脉动的变化;C1ε, C2ε和C3ε是依据经验得到的常值;σk和σε分别为与湍动能和耗散率对应的普朗特数;Sk和Sε是源项; μ为动力粘度。
-
根据普朗特的边界层思想,在物体表面总是存在一层黏性边界层,而且对于黏性流体,在壁面上将产生涡量,并将扩散和对流到流场中去[15]。在黏性流动中,壁面是个涡量源。当流体与它流过的物体表面之间发生黏性摩擦时,流体的流速就会减慢,流速的减缓会导致流体被吸附在壁面上流动,这称作科安达效应,亦称附壁作用。
-
雷诺数是一种可用来表示流体流动情况的无量纲数,利用雷诺数可区分流体的流动是层流或湍流,也可用来确定物体在流动中流动所受到的阻力。
雷诺数方程:
$ Re = \frac{{vd}}{\lambda } = \frac{{\rho vd}}{\mu } $
(6) 式中, ρ和v分别为流体的密度和流过截面的速度;γ为运动粘性系数;d为一特征长度。水的密度、运动粘性系数和动力粘度分别为103kg/m3, 103m2/s,106Pa/s。
基于水辅助激光加工的水层流动特性的研究
Investigation of water flow characteristics based on water assisted laser processing
-
摘要: 为了研究水辅助激光加工靶材上方水层流动的特性,采用流体动力学分析软件FLUENT,对3种不同结构的水辅助激光加工的水流装置进行建模仿真,分析了靶材上方流体的速度场,并对结果进行对比分析。结果表明,由垂直于靶材上方的速度位置图的分析可知,装置结构的差异使得流场也具有差异性; 靶材上方1cm以内位置,流体速度平稳,有利于传输激光,排出熔渣和放置加工材料。这对选择水辅助激光加工构建控制水层流动的装置提供了理论依据。Abstract: In order to study the water flow characteristics of target layer during the water assisted laser processing, fluid dynamics analysis software FLUENT was used to do the model and simulation of three different flow devices for water assisted laser processing. The velocity field of fluid above target material was analyzed and the results were analyzed in contrast. The results show that, flow field has difference with the difference of device structure based on the analysis of speed-position curves perpendicular to target material. The fluid speed is smooth within the position of less than 1cm above target. The position is good for laser transmission, slag discharge and processing material placement. The study provides a theory basis for building water flow control device of water assisted laser processing.
-
-
[1] LIU J M, CAO F G. Application and development trend of laser combined machining technology[J]. Electromachining & Mould, 2006, 4(5):5-9 (in Chinese). [2] CHEN Y L, XU B C, YUAN G F, et al. Study on the removed quantity of difficult to machine materials in laser chemical combined[J]. China Mechanical Engineering, 2009, 20(11): 1356-1360 (in Chinese). [3] ZHANG H, XU J W, WANG J M. Experimental study of neutral salt solution assisted laser machining[J]. Chinese Journal of Lasers, 2008, 35(11):1836-1840 (in Chinese). doi: 10.3788/JCL [4] SU H X. Water guided laser processing technology[J]. Optoelectronic Technology & Information, 1998, 11(3):35-38 (in Chinese). [5] WANG X Y, XU W X, XU W J, et al. Simulation and experiment of laser bending of silicon sheet[J]. Optics and Precision Engineering, 2008, 16(4): 605-610(in Chinese). [6] ZHAN C J, LI C F, PAN Y C, et al. Analysis of fluid flow in micro-waterjet guided laser precision drilling process[J]. Chinese Quarterly of Mechanics, 2011, 32(2): 159-165 (in Chinese). [7] ZHANG C T, YUAN G F, CHEN X H, et al. Experimental study about effect of water-jet to laser etching of crystal silicon[J]. Applied Laser, 2014, 31(6): 557-561 (in Chinese). [8] FU Y H, CAO J, DONG F, et al. CFD simulation of the laser stable water beam in micro water-jet guided laser[J]. Fluid Machinery, 2013, 42(8): 21-25 (in Chinese). [9] EDDIE Y K.The stability of 30μm-diameter water jet for jet-guided laser machining[J].International Journal of Advanced Manufacturing Technology, 2015, 7(8):939-946. [10] ZHOU J J, XU G Q, ZHANG H J. FLUENT software engineering techniques and case analysis[M]. Beijing: China Water & Power Press, 2010:39-365(in Chinese). [11] DING X S, JIAO N. Fluent 14.5 fluid simulation calculation from the Introduction to the master[M]. Beijing: Tsinghua University Press, 2014:23-186(in Chinese). [12] LI J, ZHANG Q, ZHOU Y Zh.Analysis of influence of nozzle convergence on water-jet capacity[J]. Information Technology, 2015, 44(5): 102-104 (in Chinese). [13] YANG Y S, ZHANG J P, NIE S L. Energy loss of nozzles in water jet system[J]. Journal of Mechanical Engineering, 2013, 49(2):139-144(in Chinese). doi: 10.3901/JME.2013.02.139 [14] PEI E R, CHAI J Ch. Research on the flow characteristic of spray nozzle and design[J]. Journal of Drainage and Irrigation Machinery Engineering, 2004, 22(5): 29-31(in Chinese). [15] ZHUANG L X, YIN X Y, MA H Y. Fluid mechanics[M]. Hefei: University of Science and Technology of China Prass, 2009:145-336 (in Chinese). [16] WISAN C, VIBOON T, CHAIYA D. Preliminary study of ultrasonic assisted underwater laser micromachining of silicon[J]. Applied Mechanics and Material, 2016, 835(2):139-143. [17] WEE L M, KHOONG L E, TAN C W, et al. Solvent-assisted laser drilling of silicon carbide[J]. International Journal of Applied Ceramic Technology, 2011, 8(6): 1263-1276. doi: 10.1111/ijac.2011.8.issue-6