高级检索

Yb3+掺杂锂硅酸盐玻璃的近红外发光特性

宋昭远, 姚桂彬, 刘晓东, 张磊磊, 黄艳茹

宋昭远, 姚桂彬, 刘晓东, 张磊磊, 黄艳茹. Yb3+掺杂锂硅酸盐玻璃的近红外发光特性[J]. 激光技术, 2017, 41(2): 280-283. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.027
引用本文: 宋昭远, 姚桂彬, 刘晓东, 张磊磊, 黄艳茹. Yb3+掺杂锂硅酸盐玻璃的近红外发光特性[J]. 激光技术, 2017, 41(2): 280-283. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.027
SONG Zhaoyuan, YAO Guibin, LIU Xiaodong, ZHANG Leilei, HUANG Yanru. Near-infrared luminescence properties of Yb3+-doped lithium silicate glasses[J]. LASER TECHNOLOGY, 2017, 41(2): 280-283. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.027
Citation: SONG Zhaoyuan, YAO Guibin, LIU Xiaodong, ZHANG Leilei, HUANG Yanru. Near-infrared luminescence properties of Yb3+-doped lithium silicate glasses[J]. LASER TECHNOLOGY, 2017, 41(2): 280-283. DOI: 10.7510/jgjs.issn.1001-3806.2017.02.027

Yb3+掺杂锂硅酸盐玻璃的近红外发光特性

基金项目: 

国家自然科学基金资助项目 11404154

辽宁省自然科学基金资助项目 2013020151

国家自然科学基金资助项目 61307110

抚顺市科学技术发展计划资助项目 20141117

国家自然科学基金资助项目 21403101

详细信息
    作者简介:

    宋昭远(1967-), 男, 博士, 副教授, 主要从事特种光纤及稀土掺杂光电材料方面的研究工作。E-mail:zysong815@163.com

  • 中图分类号: TQ171;O433

Near-infrared luminescence properties of Yb3+-doped lithium silicate glasses

  • 摘要: 为了研制高功率光纤激光器的掺镱纤芯材料,采用高温熔融法制备了0.70SiO2-0.18Li2CO3-0.04MgCO3-0.04BaCO3-0.02Al2O3-0.02Yb2O3(摩尔分数)锂硅酸盐玻璃样品,测试了其吸收光谱和858nm激发下的荧光光谱,进一步对光谱和激光性能参量进行了理论计算。结果表明,样品的主荧光峰位于1036nm附近,荧光有效线宽为94.1nm,吸收截面为1.143pm2,发射截面为1.024pm2,荧光寿命为0.98ms,激发态最小的粒子数仅为0.042,最小抽运强度为0.76kW·cm-2。与近年来相关文献中报道的镱掺杂玻璃相比,该掺镱锂硅酸盐玻璃在光谱及激光性能上比较有优势,有望在研制镱掺杂光纤中得到应用。
    Abstract: In order to develop ytterbium-doped core material of high-power fiber lasers, lithium silicate glass samples with ingredients 0.70SiO2-0.18Li2CO3-0.04MgCO3-0.04BaCO3-0.02Al2O3-0.02Yb2O3 (mole fraction) were prepared by the method of high temperature melting. Absorption spectrum in the range of 850nm~1100nm and fluorescence spectrum under excitation wavelength of 858nm were measured. Spectral and laser property parameters were theoretically calculated by using experimental data. The results demonstrate that the main fluorescence line with 1036nm wavelength has effective width of 94.1nm, absorption cross section of 1.143pm2, emission cross section of 1.024pm2 and fluorescence lifetime of 0.98ms. The least population of the exciting state is only 0.042 and the most minimal pump intensity is 0.76kW·cm-2. Compared with the recently reported Yb3+-doped laser glasses, the glass samples with these parameters are advantageous. This kind of Yb3+-doped lithium silicate glass is hopeful to apply in the preparation of Yb-doped fiber cores.
  • Figure  1.   Absorption and fluorescence spectra of glass samples

    Figure  2.   Schematic diagram of Stark energy level of Yb3+ in lithium silicate glass

    Table  1   Physical properties of glass samples

    ρ/(g·cm-3) n l/mm N/(1020 ·cm-3)
    2.979 1.563 2.13 9.676
    下载: 导出CSV

    Table  2   Spectroscopic properties and laser performance parameters of glass sample and other Yb-doped glasses

    glasses λp/ nm σabs(λp)/ pm2 Σabs/ 104pm3 λemi/ nm σemiemi)/ pm2 τf/ ms σemi·τf/ (pm2·ms) βmin Isat/ (kW·cm-2) Imin/ (kW·cm-2) Δλeff/ nm
    this work 858 1.143 3.755 1036 1.024 0.98 1.00 0.042 18.18 0.76 94.1
    aluminum silicate[6] 983 2.34 - 992 1.02 0.29 0.30 0.18 - - -
    phosphate[8] 975 1.57 - 975 2.11 1.03 2.17 0.151 12.99 1.96 -
    fluorophos-phate[7] 972 1.56 7.15 1000 1.29 1.51 1.95 - - - -
    tellurite[12] 975 1.98 7.12 1001 1.36 0.96 1.31 - - 1.87 -
    borate[9] 975 1.42 5.546 995.8 0.96 1.04 1.00 0.18 2.59 14.39 34.6
    borate silicate [13] 975 0.525 - 1013 0.23 1.34 0.31 - - - -
    aluminum silica[14] 976 1.03 - 1034 1.38 0.48 0.66 - - - -
    下载: 导出CSV
  • [1]

    PUKHKAYA V, GOLDNER P, FERRIER A, et al. Impact of rare earth element clusters on the excited state lifetime evolution under irradiation in oxide glasses[J]. Optics Express, 2015, 23(3):3270-3281. DOI: 10.1364/OE.23.003270

    [2]

    LIN S B, WANG P F, SHE J B, et al. Spectroscopic and thermal properties of Yb3+ doped TeO2-Bi2O3-Nb2O5 based tellurite glasses[J]. Journal of Luminescence, 2014, 28(25):8122-8128. https://www.sciencedirect.com/science/article/pii/S0925346712001632

    [3]

    FANG G, XU X T, QUAN E C, et al. Research progress of Yb-doped double-clad fiber lasers[J]. Laser Technology, 2014, 38(2):278-282(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201402028

    [4]

    LIU Z H, ZHENG Y. Experimental study about the cavity of Yb3+-doped photonic crystal fiber laser[J]. Laser Technology, 2014, 38(1):105-108(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201401023.htm

    [5]

    LIU Y D, YAO Z J. Progress of YAG ceramic laser[J]. Laser Technology, 2013, 37(3):326-329(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jgyhw201801001

    [6]

    RAO M S, RAO C S, RAGHAVAIAH B V, et al. The role of ligand coordination on the spectral features of Yb3+ ions in lead aluminum silicate glasses[J]. Journal of Molecular Structure, 2012, 1007(1):185-190. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e5346713e60b65975a006fb80edbcf43

    [7]

    ZHENG R L, WANG P F, XU S N, et al. Spectroscopic properties of ZrF4-based fluorophosphate laser glasses with large stimulated emission cross-section and high thermal stability[J]. Laser Physics, 2013, 23(4):045805. DOI: 10.1088/1054-660X/23/4/045805

    [8]

    VENKATRAMU V, VIJAYA R, LUIS S F L, et al. Optical properties of Yb3+-doped phosphate laser glasses[J]. Journal of Alloys and Compounds, 2011, 509(16):5084-5089. DOI: 10.1016/j.jallcom.2011.01.148

    [9]

    LI W N, DING G L, LU M, et al. Investigation on spectroscopic properties of Yb3+-doped laser glasses[J]. Spectroscopy and Spectral Analysis, 2006, 26(10):1781-1784(in Chinese). https://www.ncbi.nlm.nih.gov/pubmed/17205719

    [10]

    LIU S J. Investigation on the correlation among composition, structure and property of Yb3+ doped laser glasses[D]. Changsha: Central South University, 2006: 27-30(in Chinese).

    [11]

    MCCUMBER D E. Theory of phonon-terminated optical masers[J]. Physical Review, 1964, 134(2):299-306. DOI: 10.1103-PhysRev.134.A299/

    [12]

    LIU S J, LU A X, TANG X D, et al. Spectral properties of Yb3+-doped silicate and phosphate laser glass[J]. Journal of Central South University, 2006, 37(3):433-437(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-ZNGD200603003.htm

    [13]

    WANG L L, GUO Y Y, TAN F, et al. Preparation of ytterbium-doped photonic crystal fiber core material and numerical simulation of optical fiber[J]. Infrared and Laser Engineering, 2014, 43(11):3718-3723(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201411037

    [14]

    WANG C, ZHOU G Y, HAN Y, et al. Yb3+/Al3+ co-doped silica glass prepared by melting technology based on high-frequency plasma[J]. Chinese Jouranl of Lasers, 2014, 41(6):0606001(in Chinese). DOI: 10.3788/CJL

    [15]

    YANG L Q, ZOU K S, YUAN X, et al. Spectroscopic properties of ytterbium-doped TeO2-Al2O3-Cs2O glass[J]. Acta Photonica Sinica, 2013, 42(6):679-683(in Chinese). DOI: 10.3788/gzxb

  • 期刊类型引用(0)

    其他类型引用(1)

图(2)  /  表(2)
计量
  • 文章访问数:  3
  • HTML全文浏览量:  0
  • PDF下载量:  4
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-03-01
  • 修回日期:  2016-09-12
  • 发布日期:  2017-03-24

目录

    /

    返回文章
    返回