-
设计一种银(M)-光子晶体(photomc crystal, PC)-银(M)结构,如图 1所示。其中1维光子晶体的结构为(aba)N,周期数N=10,每个周期的第1层与第3层是同种a介质,中间一层为b介质。a介质为氧化铝,其折射率和厚度分别为na =1.8和da=200nm; b介质为砷化钾,其折射率和厚度分别为nb=3.23和db=400nm。两边是厚度为dM的银层。
银介电常数εr的Drude-Lorentz色散模型[15]为:
$ {\varepsilon _{\text{r}}} = {\varepsilon _\infty } - \frac{{{\omega _{\text{p}}}^2}}{{{\omega ^2} + {\text{i}}\omega \mathit{\gamma }}} - \frac{{\mathit{\Delta } \times {\mathit{\Omega }^{\text{2}}}}}{{({\omega ^2} - {\mathit{\Omega }^{\text{2}}}) + {\text{i}}\mathit{\Gamma }}} $
(1) 式中, ω为光的角频率, ε∞=2.4064, ωp=2π×2214.6×1012Hz, γ=2π× 4.8×1012Hz, Δ=1.6604, Ω=2π×1330.1×1012Hz, Γ=2π× 620.7×1012Hz。
银的复折射率${\widetilde n_{\text{M}}}$为:
$ {\widetilde n_{\text{M}}} = \sqrt {{\varepsilon _{\text{r}}}} = {n_{\text{M}}} + {\text{i}}\mathit{k} $
(2) 式中, 复折射率的实部nM描述银对光的折射特性,其虚部k称为消光系数,描述银对光的吸收特性。为了得到银复折射率的实部nM和虚部k随波长的变化特征,利用(1)式和(2)式计算出nM和k随波长λ的响应曲线,如图 2所示。由图 2可知:波长在360nm~2000nm范围内,nM由0.02逐渐增加到0.24,银的nM值很小,这是引起银对电磁波有很强反射作用的原因。波长在300nm~2000nm范围内,k由0逐渐增加到14,银的k值较大,这是引起银对电磁波有很强吸收作用的原因。银较大的消光系数也必然对银-光子晶体-银结构中TE波和TM波的Tamm态的吸收特性产生重大影响。
计算光通过银-光子晶体-银结构的反射率和透射率用特征矩阵法[16-17],光在该结构中的特征矩阵M为:
$ \mathit{\boldsymbol{M = }}\left[ \begin{gathered} {M_{11}}\;\;\;{M_{12}} \hfill \\ {M_{21}}\;\;\;{M_{22}} \hfill \\ \end{gathered} \right] = {\mathit{\boldsymbol{m}}_{\text{M}}}{({\mathit{\boldsymbol{m}}_a}{\mathit{\boldsymbol{m}}_b}{\mathit{\boldsymbol{m}}_a})^\mathit{N}}{\mathit{\boldsymbol{m}}_{\text{M}}} $
(3) 其中,
$ \left\{ \begin{array}{l} {\mathit{\boldsymbol{m}}_{\rm{a}}} = \left[ \begin{array}{l} \;\;\;\;\cos {\delta _{\rm{a}}}\;\;\;\;\; - {\rm{i}}{\mathit{p}_{\rm{a}}}^{ - 1}\sin {\delta _{\rm{a}}}\\ - {\rm{i}}{\mathit{p}_{\rm{a}}}\sin {\delta _{\rm{a}}}\;\;\;\;\;\;\;\cos {\delta _{\rm{a}}} \end{array} \right]\\ {\mathit{\boldsymbol{m}}_{\rm{b}}} = \left[ \begin{array}{l} \;\;\;\;\cos {\delta _{\rm{b}}}\;\;\;\;\; - {\rm{i}}{\mathit{p}_{\rm{b}}}^{ - 1}\sin {\delta _{\rm{b}}}\\ - {\rm{i}}{\mathit{p}_{\rm{b}}}\sin {\delta _{\rm{b}}}\;\;\;\;\;\;\cos {\delta _{\rm{b}}}\; \end{array} \right]\\ {\mathit{\boldsymbol{m}}_{\rm{M}}} = \left[ \begin{array}{l} \;\;\;\cos {\delta _{\rm{M}}}\;\;\;\; - {\rm{i}}{\mathit{p}_{\rm{M}}}^{ - 1}\sin {\delta _{\rm{M}}}\\ - {\rm{i}}{\mathit{p}_{\rm{M}}}\sin {\delta _{\rm{M}}}\;\;\;\;\;\;\cos {\delta _{\rm{M}}} \end{array} \right] \end{array} \right. $
(4) 式中,δi=(2π/λ)nidicosθi;对于TE波, ${p_i} = \sqrt {{\varepsilon _0}/{\mu _0}} \times {n_i}\cos {\theta _\mathit{i}}, $对于TM波, ${p_i} = \sqrt {{\varepsilon _0}/{\mu _0}} \times {n_i}/\cos {\theta _\mathit{i}}\left( {i = {\text{a}},{\text{b}},{\text{M}}} \right) $; λ为入射光的波长,θ为折射角,ε0为真空的介电常数,μ0为真空的磁导率。光的透射系数t和反射系数r分别为:
$ \left\{ \begin{gathered} t = \left| {\frac{{2{p_0}}}{{\left( {{M_{11}} + {M_{12}}{p_{\text{t}}}} \right){p_0} + \left( {{M_{21}} + {M_{22}}{p_{\text{t}}}} \right)}}} \right| \hfill \\ r = \left| {\frac{{\left( {{M_{11}} + {M_{12}}{p_{\text{t}}}} \right){p_0} - \left( {{M_{21}} + {M_{22}}{p_{\text{t}}}} \right)}}{{\left( {{M_{11}} + {M_{12}}{p_{\text{t}}}} \right){p_0} + \left( {{M_{21}} + {M_{22}}{p_{\text{t}}}} \right)}}} \right| \hfill \\ \end{gathered} \right. $
(5) 式中, 下标0表示入射空间、下标t表示透射空间,光的透射率T和反射率R分别为:
$ \left\{ \begin{array}{l} T = {p_{\rm{t}}}{t^2}/{p_0}\\ {\rm{R = }}{{\rm{r}}^{\rm{2}}} \end{array} \right. $
(6) 光通过该银-光子晶体-银结构的吸收率A为:
$ A = 1 - T - R $
(7) 利用(1)式~(7)式就可以研究该银-光子晶体-银结构中两种偏振光(TE波和TM波)Tamm态的吸收特性。
金属-光子晶体-金属结构中偏振光Tamm态的吸收特性
Absorption properties of polarized light Tamm state in metal-photonic crystal-metal structure
-
摘要: 为了研究银-光子晶体-银结构中两种偏振光Tamm态的吸收性质,采用银介电常数的Drude-Lorentz色散模型和特征矩阵法,研究了吸收率随入射角、随周期数以及随银层厚度的变化规律。结果表明,在银-光子晶体-银结构中两种偏振光都会出现两个光学Tamm态(OTS),即OTS1和OTS2。两种偏振光的OTS1和OTS2的吸收峰值随着入射角的增大而逐渐增大,随着周期数的增大而缓慢增大,随着银层厚度的增大而明显增大。这些结论丰富了对银-光子晶体-银结构中两种偏振光Tamm态的吸收特性的认识。Abstract: In order to study absorption properties of Tamm state of two kinds of polarized light in silver-photonic crystal-silver structure, by using Drude-Lorentz dispersion model of silver dielectric constant and the characteristic matrix method, the variations of absorption rate with the change of incident angle, cycle number and silver layer thickness were studied. The results show that, two optical Tamm states would appear in two kinds of polarized lights in silver-photonic crystal-silver structure:OTS1 and OTS2. The absorption peak value would increase gradually with the increase of incidence angle, increase slowly with the increase of cycle number, and increase obviously with the increase of silver thickness. The study makes the deep understanding of absorption characteristics of Tamm state of two kinds of polarized light in silver-photonic crystal-silver structure.
-
Key words:
- materials /
- photonic crystal /
- optical Tamm state /
- Drude-Lorentz model /
- polarized light /
- absorption
-
[1] OHNO H, MENDEZ E E, BRUM J A, et al. Optical Tamm state on asymmetric DBR-metal structure[J].Physical Review Letters, 1990, 64(4):2555-2560. [2] KAVOKIN A V, SHELYKH I A, MALPUECH G. Lossless interface modes at the boundary between two periodic dielectric structures[J].Physical Review, 2005, B72(23):233102-233105. [3] GUO Y, SUN Y, ZHNAG Y. Experimental investigation of interface states in photonic crystal heterostructures[J]. Physical Review, 2008, E78(2):026607-026612. [4] KALITEEVSKI M, IORSH I, BRAND S. Tamm plasmon-polaritons:possible electromagnetic states at the interface of a metal and a dielectric bragg mirror[J]. Physical Review, 2007, B76(16):165415-165419. [5] BRAND S, KALITEEVSK M A, ABRAM R A. Optical Tamm states above the bulk plasma frequency at a bragg stack/metal interface[J].Physical Review, 2009, B79(8):085416-085419. [6] DURACH M, RUSINA A. Transforming Fabry-Pérot resonances into a tamm mode[J].Physical Review, 2012, B86(23):235312-235317. [7] CHUN Z H, GUANG Y, KAI W. Coupled optical tamm states in a planar dielectric mirror structure containing a thin metal film[J].Chinese Physics Letters, 2012, 29(6):067101-067104. doi: 10.1088/0256-307X/29/6/067101 [8] FANG Y T, YANG L X, ZHOU J. Tamm states of one-dimensional photonic crystal based on surface defect[J].Journal of Infrared and Millimeter Waves, 2013, 32(6):526-530(in Chinese). doi: 10.3724/SP.J.1010.2013.00526 [9] CHEN Z F, HAN P, CHEN Y H. Photonic band gap splitting based on optical Tamm states of photonic crystal[J].Acta Optica Sinica, 2012, 32(5):516002(in Chinese). doi: 10.3788/AOS [10] JIANG H L, LIU Q N. Field distribution of two kinds of polarized light in 1-D photonic crystal[J].Laser Technology, 2014, 38(5):718-722(in Chinese). [11] DAI H X, LIU Q N. Dispersion characteristics of defect mode in 1-D square doped photonic crystal waveguide[J].Laser Technology, 2013, 37(3):338-342(in Chinese). [12] JIANG Y Z, ZHANG G W, ZHU Y Y. Optical Tamm state theory study on asymmetric DBR-metal-DBR structure[J].Acta Physica Sinica, 2013, 62(16):167303(in Chinese). [13] CHEN L K, FANG Y T, ZHU N, et al. Implementation of tunable dual-band filter based on the coupling of tamm state of the 1-D photonic crystal[J]. Journal of Synthetic Crystals, 2013, 42(11):2406-2410(in Chinese). [14] LU S Q, CHAO X G, CHEN X F, et al. TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure[J].Acta Optica Sinica, 2015, 35(1):116003(in Chinese). doi: 10.3788/AOS [15] SU J, SUN C, WANG X Q. A metallic dispersion model for numerical simulation[J].Journal of Optoelectronics·Laser, 2013, 24(2):408-411(in Chinese). [16] LIU Q N, LIU Q. Transmission theory of photonic and phononic crystal[M].Beijing:Science Press, 2013:125-162(in Chinese). [17] LIU Q N, LIU Q. Light field dispersion effect of total reflection tunnel in 1-D photonic crystal[J].Laser Technology, 2014, 38(6):738-742(in Chinese).