-
考虑由两个色散柱面透镜组成的双焦光学系统,如图 1所示, 图中l是两个柱面透镜之间的距离。x方向的焦距为fx(λ),y方向为fy(λ),且fx>0, fy>0,fx(λ)和fy(λ)与波长有关:
$ \left\{ \begin{array}{l} {f_x}\left( \lambda \right) = {f_{0, x}}\frac{{{n_0} - 1}}{{n\left( \lambda \right) - 1}}\\ {f_y}\left( \lambda \right) = {f_{0, y}}\frac{{{n_0} - 1}}{{n\left( \lambda \right) - 1}} \end{array} \right. $
(1) 式中, n0, f0, x和f0, y分别是中心波长λ0对应的折射率、x方向和y方向的焦距; n(λ)是与波长λ相关的折射率。考虑色散透镜为熔石英材质,其折射率为[17]:
$ {n^2}\left( \lambda \right) = 1 + \sum\limits_{i = 1}^3 {} \frac{{{B_i}}}{{1 - \frac{{{\lambda _i}^2}}{{{\lambda ^2}}}}} $
(2) 式中, B1=0.6961663, B2=0.4079426, B3=0.8974794, λ1=0.0684043μm, λ2=0.1162414μm,λ3=9.896161μm。
考虑l=0的情况,则入射面到考察点z处的传输矩阵为:
$ \left\{ \begin{array}{l} \left[ {\begin{array}{*{20}{c}} {{A_x}}&{{B_x}}\\ {{C_x}}&{{D_x}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {1 - \frac{z}{{{f_x}\left( \lambda \right)}}}&z\\ { - \frac{1}{{{f_x}\left( \lambda \right)}}}&1 \end{array}} \right]\\ \left[ {\begin{array}{*{20}{c}} {{A_y}}&{{B_y}}\\ {{C_y}}&{{D_y}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {1 - \frac{z}{{{f_y}\left( \lambda \right)}}}&z\\ { - \frac{1}{{{f_y}\left( \lambda \right)}}}&1 \end{array}} \right] \end{array} \right. $
(3) 根据Collins公式,宽带激光通过双焦透镜系统后在z处的场分布为:
$ \begin{align} &E\left( x, y, z \right)=\frac{\text{exp}(\text{i}kz)}{\text{i}\lambda }\sqrt{\frac{1}{{{B}_{x}}{{B}_{y}}}}\times \\ &\iiint{{}}{{E}_{0}}({{x}_{0}}, {{y}_{0}}, z, \omega )\text{exp}\left[ -\frac{\text{i}k}{2{{B}_{x}}}({{A}_{x}}{{x}_{0}}^{2}-2{{x}_{0}}x+{{D}_{x}}{{x}^{2}}) \right]\times \\ &\text{exp}\left[ -\frac{\text{i}k}{2{{B}_{y}}}({{A}_{y}}{{y}_{0}}^{2}-2{{y}_{0}}y+{{D}_{y}}{{y}^{2}}) \right]\text{d}{{x}_{0}}\text{d}{{y}_{0}}\text{d}\omega \\ \end{align} $
(4) 式中, E0(x, y, 0, ω)是入射面z=0处的场分布。考虑E0(x, y, 0, ω)是可以分离为E0(x, y, 0)S(ω)的简单情况,其中E0(x, y, 0)和S(ω)分别是入射面z=0处的空间分布和频谱分布。假设空间分布E0(x, y, 0)为高斯形,即:
$ {{E}_{0}}(x, y, 0)=\text{exp}\left[ -\left( \frac{{{x}^{2}}}{{{w}_{0, x}}^{2}}+\frac{{{y}^{2}}}{{{w}_{0, y}}^{2}~} \right) \right] $
(5) 式中, w0, x, w0, y分别是x方向和y方向的光束宽度。考虑激光的频谱为矩形谱:
$ S\left( \omega \right)=\left\{ \begin{align} &1, (|\omega |\le \Delta \omega ) \\ &0, (|\omega |>\Delta \omega ) \\ \end{align} \right. $
(6) 式中, Δω=Δλω0/λ0是谱宽,ω0是中心频率,Δλ是单位为nm的谱宽。
仅考虑轴上的场分布,因此对(4)式积分后得到:
$ \begin{align} &E(0, 0, z)=\int_{-\infty }^{\infty }{{}}\frac{\text{i}k}{2z}\times \\ &\frac{S(\omega )\text{d}\omega }{\sqrt{\left\{ \frac{1}{{{w}_{0, x}}^{2}}+\frac{\text{i}k}{2}\left[ \frac{1}{z}-\frac{1}{{{f}_{x}}\left( \lambda \right)} \right] \right\}\left\{ \frac{1}{{{w}_{0, y}}^{2}}+\frac{\text{i}k}{2}\left[ \frac{1}{z}-\frac{1}{{{f}_{y}}(\lambda )} \right] \right\}}} \\ \end{align} $
(7) 由上式即可得到轴上的光强分布为:
$ I\left( 0, 0, z \right)=E{{(0, 0, z)}^{2}} $
(8)
矩形谱宽带激光中带宽诱导的焦开关现象
Bandwidth-induced focal switch in broadband laser with rectangular spectrum
-
摘要: 为了研究频带宽度对激光光束传输和激光应用产生的影响,采用衍射积分推导了矩形谱宽带激光通过双焦色散透镜后的传输公式,利用数值计算研究了矩形谱宽带激光带宽诱导的焦开关现象,分析得到带宽对光强分布和焦开关的影响。结果表明,带宽是影响光强分布和焦开关形成的重要因素;带宽变化会导致光强分布中光强主极大从一个位置跃变到另一个位置,从而形成焦开关现象。该研究结果有助于进一步推动宽频带激光的应用。Abstract: In order to research the effects of frequency bandwidth on the propagation and applications of broadband laser, the propagation formula of broadband laser with rectangular spectrum passing through a bifocal dispersion lens system was derived by using diffraction integral. Bandwidth-induced focal switch in broadband laser with rectangular spectrum is studied by numerical calculation. The effects of bandwidth on the intensity distribution and focal switch were analyzed. The results show that bandwidth is an important factor affecting intensity distribution and focal switch. Primary maximum intensity of the focused broadband laser can rapidly bounce from one place to another with the variety of bandwidth and then the focal switch is generated. The results are helpful for further applications of broadband laser.
-
Key words:
- laser optics /
- focal switch /
- dual-focus system /
- bandwidth
-
-
[1] ALFANO R R, SHAPIRO S L. Observation of self-phase modulation and small-scale filaments in crystals and glasses[J]. Physics Review Letters, 1970, 24(11):592-594. doi: 10.1103/PhysRevLett.24.592 [2] ALFANO R R, SHAPIRO S L. Direct distortion of electronic clouds of rare-gas atoms in intense electric fields[J]. Physics Review Letters, 1970, 24(22):1217-1220. doi: 10.1103/PhysRevLett.24.1217 [3] JONES D J, DIDDAMS S A, RANKA J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466):635-639. doi: 10.1126/science.288.5466.635 [4] HSIUNG P, CHEN Y, KO T H, et al. Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source[J]. Optics Express, 2004, 12(22):5287-5295. doi: 10.1364/OPEX.12.005287 [5] MORIOKA T, MORI K, SARUWATARI M. More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers[J]. Electronics Letters, 1993, 29(10):862-864. doi: 10.1049/el:19930576 [6] LI A P, ZHENG Y, ZHANG X F, et al. The supercontinuum generation in a photonic crystal fiber pumped at the anomalous dispersion region.Laser Technology, 2008, 32(1):50-52(in Chinese). [7] AMENT C, POLYNKIN P, JEROME V M. Supercontinuum generation with femtosecond self-healing airy pulses[J]. Physics Review Letters, 2011, 107(24):243901. doi: 10.1103/PhysRevLett.107.243901 [8] REID D T. Ultra-broadband pulse evolution in optical parametric oscillators[J]. Optics Express, 2011, 19(19):17979-17984. doi: 10.1364/OE.19.017979 [9] CONFORTI M, BARONIO F, ANGELIS C D. Nonlinear envelope equation for broadband optical pulses in quadratic media[J]. Physical Review, 2010, A81(5):053841. [10] PENG R W, LI L, LI Y J, et al. Intensity distribution of broadband laser with flattened-Gaussian mode passing through an aperture[J]. Laser Technology, 2013, 37(6):829-832(in Chinese) [11] YUAN N, ZHANG W, WANG J, et al. Intensity distributions of a supercontinuum laser in an apertured dispersion lens[J]. Chinese Physics Letters, 2015, 32(3):034201. doi: 10.1088/0256-307X/32/3/034201 [12] MARTINEZ M, CLIMENT V. Focal switch:a new effect in low-Fresnel-number systems[J]. Applied Optics, 1996, 35(1):24-27. doi: 10.1364/AO.35.000024 [13] JI X L, LÜ B D. Focal shift and focal switch of flattened Gaussian beams in passage through an aperture bifocal lens[J]. IEEE Journal of Quantum Electronics, 2003, 39(1):172-178. doi: 10.1109/JQE.2002.806204 [14] DU X, ZHAO D. Focal shift and focal switch of focused truncated elliptical Gaussian beams[J]. Optics Communications, 2007, 275(2):301-304. doi: 10.1016/j.optcom.2007.03.047 [15] LIU W B, ZHONG M, HE H X, et al. Focal shift and focal switch of partially coherent annular beam focused by lens.Laser Technology, 2008, 32(3):259-261(in Chinese). [16] MU G Q, WANG L, WANG X Q. Focal switch of cosine-squared Gaussian beams passing through an astigmatic lens.Laser Technology, 2011, 35(4):562-565(in Chinese). [17] MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55(10):1205-1208. doi: 10.1364/JOSA.55.001205 [18] PENG R W, LI L, LI Y J, et al. Positive and negative focal shifts of an apertured supercontinuum laser with rectangular spectrum[J]. Optics Communications, 2013, 298/299:34-36. doi: 10.1016/j.optcom.2013.02.051