高级检索

色散透镜系统中宽带厄米-高斯光束的焦移

谢鹏飞, 彭润伍, 谢海情

谢鹏飞, 彭润伍, 谢海情. 色散透镜系统中宽带厄米-高斯光束的焦移[J]. 激光技术, 2019, 43(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.022
引用本文: 谢鹏飞, 彭润伍, 谢海情. 色散透镜系统中宽带厄米-高斯光束的焦移[J]. 激光技术, 2019, 43(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.022
XIE Pengfei, PENG Runwu, XIE Haiqing. Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system[J]. LASER TECHNOLOGY, 2019, 43(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.022
Citation: XIE Pengfei, PENG Runwu, XIE Haiqing. Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system[J]. LASER TECHNOLOGY, 2019, 43(3): 406-410. DOI: 10.7510/jgjs.issn.1001-3806.2019.03.022

色散透镜系统中宽带厄米-高斯光束的焦移

基金项目: 

国家自然科学基金资助项目 61404011

湖南省自然科学基金资助项目 2015JJ3001

详细信息
    作者简介:

    谢鹏飞(1996-), 男, 硕士研究生, 主要从事光电信息技术方面的研究

    通讯作者:

    彭润伍, E-mail:pengrunwu@163.com

  • 中图分类号: O436

Focal shift of polychromatic Hermite-Gaussian beams in dispersion lens system

  • 摘要: 为了了解带宽对厄米-高斯光束的聚焦特性和焦移的影响,采用衍射积分推导了TEM11模和TEM22模厄米-高斯光束通过受光阑限制色散透镜的传输公式,并利用数值计算对聚焦光强分布进行了研究,分析了带宽对两种模式焦移的影响。结果表明,TEM11模和TEM22模厄米-高斯光束的焦移量都会随带宽增大而增大,但两者的大小依赖相对带宽;当相对带宽小于0.25时,TEM22模焦移量大于TEM11模焦移量,然而相对带宽大于0.25时,后者会稍大于前者;带宽变化使TEM22模轴上光强主极大和次极大发生消长,从而引起轴上光强极大位置发生跃变。该研究结果对宽带厄米-高斯光束的应用具有一定的参考价值。
    Abstract: In order to know effect of bandwidth on the focused properties and focal shift of Hermite-Gaussian (H-G) beam, propagation formula of H-G beams passing through a dispersion lens system with polychromatic TEM11 mode and TEM22 mode was obtained by using diffraction integral. The focused intensity distribution was studied by numerical calculation. The effect of bandwidth on focal shift of both modes were analyzed. The results show that the focal shifts of H-G beams with TEM11 mode and TEM22 mode increase with the increase of the bandwidth and depend on the relative bandwidth. Focal shift of TEM22 mode is greater than that of TEM11 mode when relative bandwidth is smaller than 0.25 whereas the latter is somewhat greater than the former when relative bandwidth exceeds 0.25. The principle maximum intensity and the secondary maximum intensity of TEM22 mode on the axis compete each other with the vary of bandwidth and then the axial primary maximum intensity transits from one place to another. The results are helpful for further application of the polychromatic H-G beams.
  • Figure  1.   Schematic illustration of an apertured dispersion lens system

    Figure  2.   Focused fields grayscale images of polychromatic TEM11 mode H-G beams

    a—γ=0.05   b—γ=0.1   c—γ=0.15

    Figure  3.   The relative focal shift of polychromatic TEM11 mode H-G beams vs. the relative bandwidth

    Figure  4.   Focused field grayscale images of polychromatic TEM22 mode H-G beams

    a—γ=0.05   b—γ=0.1   c—γ=0.15

    Figure  5.   The relative focal shift of polychromatic TEM11 mode H-G beams and TEM22 mode H-G beams vs. the relative bandwidth

    Figure  6.   Focused fields grayscale images of polychromatic TEM22 mode H-G beams when γ=0.22

  • [1]

    LI Y, WOLF E. Focal shifts in diffracted converging spherical waves[J]. Optics Communications, 1981, 39(4):211-215. DOI: 10.1016/0030-4018(81)90108-5

    [2]

    LI Y, WOLF E. Focal shift in focused truncated Gaussian beams[J]. Optics Communications, 1981, 42(3):151-156. http://cn.bing.com/academic/profile?id=2eb75daf514967502eeb1be0eff7f7fb&encoded=0&v=paper_preview&mkt=zh-cn

    [3]

    MARTÍNE-CORRAL M, CABALLERO M T, MUÑOZ-ESCRIVÁ L, et al. Focal-shift formula in apodized non-telecentric focusing systems[J]. Optics Letters, 2001, 26(19):1501-1504. DOI: 10.1364/OL.26.001501

    [4]

    KEIR C N, ELIO A A, STEVEN M B. Measurement of the effective focal shift in an optical trap[J]. Optics Letters, 2005, 30(22):1318-1320. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=eeb71ea455bac9d5d695a689fad4b824

    [5]

    GHAFARY B, SIAMPOOR H, ALAVINEJAD M. Focal shift for off-axial partially coherent flat topped beams passing a thin lens[J]. Optics & Laser Technology, 2010, 42(5):755-759. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=061741a59f0c925468e9342c2fe5e442

    [6]

    YUN M J, LIANG W, KONG W J, et al. Transverse superresolution and focal shift with rotational tunable phase mask[J]. Optics Communications, 2010, 283(10):2079-2083. DOI: 10.1016/j.optcom.2010.01.039

    [7]

    ALAVINEJAD M, ROWSHANI A R, GHAFARY B. Focal shift and focal switch of phase-lock partially coherent flat-topped array beams passing through an aligned and misaligned lens system with aperture[J]. Optics and Lasers in Engineering, 2012, 50(9):1341-1349. DOI: 10.1016/j.optlaseng.2012.02.006

    [8]

    YU Y T, ZAPPE H. Theory and implementation of focal shift of plasmonic lenses[J]. Optics Letters, 2012, 37(9):1592-1594. DOI: 10.1364/OL.37.001592

    [9]

    PENG R W, LI L, LI Y J, et al. Positive and negative focal shifts of an apertured supercontinuum laser with rectangular spectrum[J]. Optics Communications, 2012, 298/299(1):34-36. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a248f72cbc59fe48bc18e172e842da3c

    [10]

    PENG R W, LI L, LI Y J, et al. Effect of spectrum property on a focused supercontinuum laser[J]. Optics Communications, 2013, 309(15):26-29. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=8a1f087962dfce3f5d13b4dd12d5810b

    [11]

    REN Zh Ch, QIAN Sh X, TU Ch H, et al. Focal shift in tightly focused Laguerre-Gaussian beams[J]. Optics Communications, 2015, 334(1):156-159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=405b813071258c60ec3539eebf98bb9e

    [12]

    PENG Ch B. Observation of focal point shift in solid immersion mi-rror[J]. Optics Express, 2015, 23(2):1498-1504. DOI: 10.1364/OE.23.001498

    [13]

    HE Sh M, WANG Zh H, LIU Q F, et al. Study of focal shift effect in planar GaN high contrast grating lenses[J]. Optics Express, 2015, 23(23):29360-29368. DOI: 10.1364/OE.23.029360

    [14]

    MA R, LI Y T, LIU Y M, et al. Focal shift of nano-optical lens a-ffected by periodic resonance with substrate[J]. IEEE Photonics Journal, 2016, 8(6):4502309. https://ieeexplore.ieee.org/document/7593321/

    [15]

    ZHANG M H, CHEN Y H, LIU L, et al. Focal shift of a focused partially coherent Laguerre-Gaussian beam of all orders[J]. Journal of Modern Optics, 2016, 63(21):2226-2264. DOI: 10.1080/09500340.2016.1191687

    [16]

    ZHANG M H, CHEN Y H, CAI Y J, et al. Effect of the correlation function on the focal shift of a partially coherent beam[J]. Journal of the Optical Society of America, 2016, A33(12):2509-2515. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3094437157c4b0be95b9c9ca5a69c85

    [17]

    PENG J, CUI Zh F, QU J. Solution and focus property of the nonparaxial vector beams in the parabolic coordinates[J].Laser Technology, 2014, 38(5):703-708(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201405027

    [18]

    ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere[J]. Laser Technology, 2016, 40(5):750-755(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201605028

    [19]

    ZHANG B Y, PENG R W, ZHANG W. Bandwidth-induced focal switch in broadband laser with rectangular spectrum[J]. Laser Technology, 2017, 41(1):138-140(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201701028

    [20]

    ZHAO J H, WANG Q, ZHU B W, et al. Compact focusing properties of radial vector beam with vortex phase encoding[J]. Laser Technology, 2017, 41(2):187-190(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201702008

    [21]

    JI X L, ZHANG E T, LÜ B D. Spreading of spatially partially coherent polychromatic beams in atmospheric turbulence[J]. Optik, 2008, 119(14):689-694. DOI: 10.1016/j.ijleo.2007.01.016

    [22]

    MAO H D, ZHAO D M. Second-order intensity-moment characteristics for broadband partially coherent flat-topped beams in atmospheric turbulence[J]. Optics Express, 2010, 18(2):1741-1755. DOI: 10.1364/OE.18.001741

    [23]

    MALITSON I H. Interspecimen comparison of the refractive index of fused silica[J]. Journal of the Optical Society of America, 1965, 55(10):1205-1209. DOI: 10.1364/JOSA.55.001205

图(6)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-10
  • 修回日期:  2018-07-07
  • 发布日期:  2019-05-24

目录

    /

    返回文章
    返回