高级检索

基于M-Z干涉的相干高斯光束远场干涉图样研究

单聪淼, 孙华燕, 赵延仲

单聪淼, 孙华燕, 赵延仲. 基于M-Z干涉的相干高斯光束远场干涉图样研究[J]. 激光技术, 2017, 41(1): 113-119. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.023
引用本文: 单聪淼, 孙华燕, 赵延仲. 基于M-Z干涉的相干高斯光束远场干涉图样研究[J]. 激光技术, 2017, 41(1): 113-119. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.023
SHAN Congmiao, SUN Huayan, ZHAO Yanzhong. Study of far-field interference pattern for coherent Gaussian beams based on Mach-Zehnder interferometer[J]. LASER TECHNOLOGY, 2017, 41(1): 113-119. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.023
Citation: SHAN Congmiao, SUN Huayan, ZHAO Yanzhong. Study of far-field interference pattern for coherent Gaussian beams based on Mach-Zehnder interferometer[J]. LASER TECHNOLOGY, 2017, 41(1): 113-119. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.023

基于M-Z干涉的相干高斯光束远场干涉图样研究

基金项目: 

国家自然科学基金资助项目 61302183

详细信息
    作者简介:

    单聪淼(1988-), 女, 博士研究生, 现主要从事光学信息获取与处理的研究

    通讯作者:

    孙华燕, E-mail:shy221528@vip.sina.com

  • 中图分类号: O436.1;TN249

Study of far-field interference pattern for coherent Gaussian beams based on Mach-Zehnder interferometer

  • 摘要: 为了使远场相干光斑分布及干涉图样的条纹间距和条纹对比度满足激光主动相干探测的要求,对基于马赫-曾德尔干涉原理的相干光发射装置发出的相干高斯光束在远场的扫描相干光场分布特性进行了分析,推导了高斯光束远场扫描相干光场的解析光强分布公式,得到了高斯光束远场扫描干涉图样。利用物理光学相关原理推导了远场的相干光光程差、干涉图样的条纹间距以及条纹对比度的表达式。数值仿真分析了马赫-曾德尔干涉光发射装置的分束镜旋转角度、探测距离和扫描角速度对远场相干光强分布特性的影响,得到了这几个物理量之间的定量关系。结果表明,远场扫描相干光强分布主要受到分束镜旋转角度、探测距离和发射装置扫描角速度等参量影响;干涉光发射装置的分束镜旋转角度同时影响远场接收屏上干涉图样的条纹间距及条纹对比度。该研究结果对实际探测中如何选取分束镜的旋转角、使其在满足条纹间距目标尺寸要求的前提下,适当调节旋转角度,获得尽可能大的条纹对比度是有帮助的。
    Abstract: In order to make the quality of fringe spacing and fringe visibility of interference pattern to meet the strict demands of active coherent laser detecting system of far distance, the distribution characteristics of coherent Gaussian beams based on Mach-Zehnder interferometer were analyzed. Optical intensity distribution of coherent Gaussian beams was deduced. Then interference pattern of scanning coherent Gaussian beams was gotten. The expressions of optical path difference, fringe spacing and fringe visibility based on Mach-Zehnder interferometer were derived by physical optics theory. The influences of rotation angle of beam splitter, detection distance and scanning speed on distribution characteristics of coherent light of far distance were analyzed and simulated numerically. As a result, the quantitative relation of rotation angle of beam splitter, detection distance and scanning speed was found. The results show that the distribution of coherent light of far distance is mainly controlled by rotation angle of beam splitter, detecting distance and scanning speed etc. Rotation angle of beam splitter in the interferometer has the influence on both fringe spacing and fringe visibility. The conclusion is helpful to choose the rotation angle in the experiment. Fringe spacing and fringe visibility should be taken into consideration simultaneously and the rotation angle of beam splitter is adjusted. It's useful to make the fringe visibility as large as possible.
  • Figure  1.   Laser emitting device of Mach-Zehnder interferometer

    Figure  2.   Far-field scanning schematic of coherent Gaussian beam

    Figure  3.   Relationship between far-field interferent intensity distribution and beamsplitter rotation angle

    Figure  4.   Quantitative relationship between fringe spacing e and beamsplitter rotation angle θ1

    Figure  5.   Influence of beamsplitter rotation angle on far-field coherent light stripe contrast

    a—θ1=0.01° b—θ1=0.03° c—θ1=0.05° d—θ1=0.1°

    Figure  6.   Relationship between far-field interference intensity distribution and transmission distance

    Figure  7.   Quantitative relationship between fringe spacing and transmission distance

    Figure  8.   Effect of scanning speed on far-field coherent distribution

  • [1]

    LECOCQ C, DESHORS G, LADO-BORDOWSKY O, et al. Sight laser detection modeling[J]. Proceedings of the SPIE, 2003, 5086:280-286. DOI: 10.1117/12.486055

    [2]

    ZHAO Y Zh, SUN H Y, SONG F H, et al. Research and prospect of cat-eye effect used for active laser detection technique[J]. Laser & Optoelectronics Progress, 2010, 47(10):102802(in Chinese).

    [3]

    ZHAO X J, GAO Zh Y, ZHANG Y Y. Technique of active laser reconnaissance and the applications in the military[J]. Optical Technique, 2003, 29(4):415-417(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXJS200304009.htm

    [4]

    QIN K, HAN Sh K, LIU J N. Evaluation and analysis to the "cat's eye" effect in typical optical observation window[J]. Optical Technique, 2010, 36(3):391-394(in Chinese). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4821013

    [5]

    ZHAO Y Zh, SUN H Y, SONG F H, et al. Research on the mechanism of reflection characteristics of laser irradiation on the cat eye optical lens[J]. Acta Physica Sinica, 2008, 57(4):2284-2294(in Ch-inese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-WLXB200804048.htm

    [6]

    ZHAO Y Zh, SUN H Y, SONG F H, et al. Propagation properties of oblique and off-axial Gaussian beams passing through cat-eye optical lens[J]. Acta Optica Sinica, 2009, 29(9):2252-2556(in Chinese). http://en.cnki.com.cn/article_en/cjfdtotal-gxxb200909043.htm

    [7]

    ZHAO Y Zh, SONG F H, SUN H Y, et al. Laser reflection characteristics of cat eye effect of Cassegrain lens[J]. Chinese Journal of Lasers, 2008, 35(8):1149-1155(in Chinese). DOI: 10.3788/JCL

    [8]

    ZHAO Y Zh, SUN H Y, SONG Zh, et al. Three-dimensional analytical formula for oblique and off-axis Gaussian beams propagating through a cat-eye optical lens[J]. Chinese Physical Letters, 2010, 27(3):034101. DOI: 10.1088/0256-307X/27/3/034101

    [9]

    LIU B, TAO W, KE Z G, et al. Balance coherent detection technology of coherent lidar[J]. Laser Technology, 2015, 39(1):46-49(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGJS201501009.htm

    [10]

    LI F D, GUO H N, SUN J G, et al. Simulation and experimental study on coherent combination of dual beam fiber laser[J]. Laser Technology, 2014, 38(4):509-514(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201404015.htm

    [11]

    HE B, LOU Q H, ZHOU J, et al. High power coherent beam combination from two fiber laser[J]. Journal of the Optical Society of America, 2006, 14(7):2721-2726. http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC026190439/

    [12]

    ZHAO Y Zh, SUN H Y, ZHENG Y H, et al. Theoretical analysis of scanning and identifying cat-eye target with coherently combined array Gaussian beams[J]. Acta Optica Sinica, 2011, 31(4):102-108(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-GXXB201104020.htm

    [13]

    SUN X J, ZHAO Zh M. Theoretically analysis for all-fiber Mach-Zehnder interferometer based on interference analysis method[J]. Journal of Shandong TV University, 2010(1):66-67(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-SDDD201001027.htm

    [14]

    QI H Q, DUAN K L, PU J X. Interference fringes of coherent combining fiber lasers[J]. Laser Technology, 2009, 33(2):187-190(in Chinese). http://www.opticsjournal.net/abstract.htm?aid=OJ100228000447TpVsYu

    [15]

    CAI Y J, ZHU Sh Y. Coincidence imaging and interference with coherent Gaussian beams[J]. Acta Sinica Quantum Optica, 2005, 11(4):139-144(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zggdxxxswx-wlx200602011

    [16]

    LIANG Q T. Physical optics[M]. 4rd ed. Beijing:Publishing House of Electronics Industry, 2012:74-76(in Chinese).

图(8)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  1
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-13
  • 修回日期:  2016-03-20
  • 发布日期:  2017-01-24

目录

    /

    返回文章
    返回