-
当高斯光束聚焦在非线性晶体内进行倍频时,倍频光功率正比于函数hm(B, ξ, μ)[14]。对于周期极化晶体,双折射参量B=0。以束腰半径w0=50μm的高斯光束聚焦到长度为10mm的PPMgOLN为例,此时聚焦参量ξ≈0.68。固定B和ξ这两个参量,绘制出hm(B, ξ, μ)关于束腰在晶体内位置参量μ的关系,如图 1所示。为方便分析,已对最大值0.5244归一化。其中μ=0对应束腰位于晶体中心;μ=-1或μ=1对应束腰位于晶体的前或后端面处;-1 < μ < 0或0 < μ < 1对应束腰位于晶体内但偏离中心靠前或靠后的位置;μ < -1或μ>1对应束腰位于晶体之前或之后。
从图 1中可以看出,在三镜折叠腔中如果倍频晶体内高斯光束只具有一个瑞利长度,此时束腰一般位于晶体端面附近,相应的倍频效率比束腰位于晶体中心要低近20%。因此为了获得高效频率转换,希望腔内高斯光束具有两个瑞利长度,使倍频晶体中心置于束腰位置处。
-
基模高斯光束传输时,以束腰位置为坐标原点,位置z处等相位面曲率半径R(z)为[15]:
$ R\left( z \right) = {Z_0}\left( {\frac{z}{{{Z_0}}} + \frac{{{Z_0}}}{z}} \right) $
(1) 式中, Z0是波长为λ、束腰为w0的激光在真空中的瑞利长度,数值为${Z_0} = \frac{{{\rm{ \mathsf{ π} }}{w_0}^2}}{\lambda }$。
基模高斯光束在位置z处的光斑半径w(z)为[16]:
$ w\left( z \right) = {w_0}\sqrt {1 + {{\left( {\frac{z}{{{Z_0}}}} \right)}^2}} $
(2) 选取激光波长λ=1064nm,束腰半径w0=50μm,对应的瑞利长度Z0=7.4mm。利用(1)式和(2)式绘制的等相位面曲率半径和光斑大小随位置z的变化关系如图 2所示。从图形可以看出,等相位曲率半径R(z)为关于位置z的非对称抛物线。在瑞利长度z=Z0处取最小值为2Z0;在束腰位置z=0处为平面;在无穷远z=∞处也为平面;在0 < z < Z0和Z0 < z < ∞范围为球面,但前者较后者的变化要快得多。即高斯光束在z>0范围整体变化过程为平面波变为曲率半径最小的球面波,再变为平面波,那么在0 < z < Z0和Z0 < z < ∞范围内,必然有两个位置对应的等相位面的曲率半径是相同的。由于对称性,在z < 0的范围与上面的情况相同。
分析(1)式可以看到,当已知等相位面曲率半径R(z)和瑞利长度Z0时(对应激光的束腰半径w0),则公式为关于z的一元二次方程。满足R(z)>2Z0条件时有两个根,这两个根分别对应图 2中瑞利长度位置(7.4mm)两侧的两个位置;满足R(z)=2Z0具有两个相同的根,对应图 2中抛物线的最低点位置;满足R(z) < 2Z0条件时无根。结合图 2和(1)式,当R(z)取比较接近2Z0时,两个根比较接近,这为选取合适的端镜曲率半径和设计合适臂长的三镜折叠腔提供依据。同时从图 2的光斑大小w(z)随位置z的变化可以看出,此高斯光束有具有两个瑞利长度。
-
无源三镜折叠腔及其内的光束传输情况如图 3所示,其中端镜M1为平面镜,M为折叠镜,其曲率半径取R=50mm,两者之间的距离L1=65mm。端镜M2的曲率半径R2及其与M之间的距离L2x是着重需要仔细考虑的。其中L20, L21, L22分别为束腰与M之间的距离、具有一个瑞利长度、具有两个瑞利长度时第二分臂的长度。而M20, M21, M22分别为相应等相位面处放置的腔镜。显然M20处腔镜为平面镜,取L20=35mm,在以上参量下,根据谐振腔的自现条件,该三镜腔中两分臂内的束腰光斑半径分别约为100μm和50μm。
接下来将第二分臂光束继续传输,根据三镜折叠腔中端镜处高斯光束等相位面曲率半径与端镜曲率半径相同的特点,由(1)式在合适的等相位面位置放置具有相同曲率半径的腔镜,构成具有两个瑞利长度的三镜折叠腔,并利用(2)式计算端镜处的光斑半径,如表 1所示。表中w21, w22分别表示具有一个和两个瑞利长度时腔镜上的光斑半径。当然如果在图 3中的M20处右侧放置与光束等相位面曲率半径相同的凸面镜,仍可以构成稳定的谐振腔,不过此时在这一分臂上将具有不足一个瑞利长度的高斯光束。类似的,第一分臂上也可以构成具有一个、两个或不足一个瑞利长度的高斯光束。
Table 1. Cavity parameters when beam waist radius is 50μm
No. R2/mm L21/mm L22/mm w21/μm w22/μm 1 20 38.4 51.7 55 122 2 50 36.2 83.9 51 332 3 100 35.6 134.5 51 671 4 200 35.3 234.8 50 1345 5 500 35.2 534.9 50 3360 从表 1中可以看出,当腔镜M2的曲率半径取为20mm时,第二分臂长度取38.4mm和51.7mm,使得腔内具有一个和两个瑞利长度,并且腔镜上的光斑大小适中分别为55μm和122μm,此时腔内光束传输情况如图 4所示。随着腔镜曲率半径的增加,等价于等相位面曲率半径的增加,具有一个瑞利长度的L21越接近35mm,即越接近束腰位置,具有两个瑞利长度的L22越大,并接近R2+35mm,与图 2中的变化相符,并且此时腔镜上的光斑变大,即需要适当增加M2的横向尺寸,以免产生大的衍射损耗。
选取端镜M2的曲率半径为20mm构成结构紧凑的三镜折叠腔,其与M之间的距离对M1处光斑半径w1和第二分臂束腰半径w02的影响如图 5所示。从图中可以看出,第二分臂长度在(25~40.7)mm范围构成具有一个瑞利长度的谐振腔,第二分臂长度在45nm~60.7nm范围构成具有两个瑞利长度的谐振腔,稳区范围均为15.7mm。
具有两个瑞利长度三镜折叠腔的设计
Design of three-mirror-folded cavity with two Rayleigh length
-
摘要: 为了提高倍频效率、分析倍频晶体内束腰位置对倍频效率的影响,根据基模高斯光束传输特性,结合稳定三镜折叠腔中端镜处等相位面曲率半径与腔镜曲率半径相等这一特点,在激光光束传输的合适位置上,放入与等相位面曲率半径相同的腔镜,构成倍频晶体内具有两个瑞利长度的三镜折叠腔,提高了倍频效率。对比了相同端镜构成的具有一个瑞利长度和两个瑞利长度谐振腔,相对于分臂长度变化的稳区范围。结果表明,使用5W光纤耦合880nm激光二极管,端面抽运3mm×3mm×5mm的Nd:YVO4,采用10mm×2.1mm×0.5mm的PPMgOLN为倍频晶体,使用具有两个瑞利长度的谐振腔比具有一个瑞利长度的谐振腔,整体提高倍频效率约18%,两种腔型的光束质量相同,倍频光与基频光偏振方向一致,输出稳定的低噪声绿光,验证了谐振腔设计的有效性。该研究对腔内倍频效率的提高是有帮助的。Abstract: In order to improve the doubling frequency efficiency, the influence of beam waist position in frequency doubling crystal on the frequency doubling efficiency was analyzed. According to the propagation property of fundamental mode Gaussian beam, combining with the characteristic that equal phase plane of end mirror and cavity mirror having the same radius of curvature in the stable three-mirror-folded cavity, cavity mirror with the same radius of curvature was placed on the proper position and three-mirror-folded cavity with two Rayleigh length was realized. The efficiency of frequency doubling was improved. The stability regions of the cavity with one and two Rayleigh length were compared and the same stability regions were obtained. The experimental results show that when 5W fiber coupling 880nm laser diode is used to pump 3mm×3mm×5mm Nd:YVO4 and quasi-phase matched PPMgOLN with dimension of 10mm×2.1mm×0.5mm is used as frequency doubling crystal, the overall conversion efficiency is improved about 18%. For the two types of cavity, beam quality is the same. The polarization direction of doubling frequency light is consistent with that of fundamental frequency light. Stable low noise green laser is obtained. The effectiveness of resonant cavity design is verified. The study is helpful to improve the efficiency of intracavity frequency doubling.
-
Key words:
- laser optics /
- resonator /
- equal phase plane /
- Rayleigh length
-
Table 1. Cavity parameters when beam waist radius is 50μm
No. R2/mm L21/mm L22/mm w21/μm w22/μm 1 20 38.4 51.7 55 122 2 50 36.2 83.9 51 332 3 100 35.6 134.5 51 671 4 200 35.3 234.8 50 1345 5 500 35.2 534.9 50 3360 -
[1] MILLER G D, BATCHKO R G, TULLOCH W M, et al. 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate[J]. Optics Letters, 1997, 22(24):1834-1836. doi: 10.1364/OL.22.001834 [2] KUMAR S C, SAMANTA G K, DEVI K, et al. High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation[J]. Optics Express, 2011, 19(12):11152-11169. doi: 10.1364/OE.19.011152 [3] PASCHOTTA R, KüRZ P, HENKING R, et al. 82% Efficient continuous-wave frequency doubling of 1.06μm with a monolithic MgO:LiNbO3 resonator[J]. Optics Letters, 1994, 19(17):1325-1327. doi: 10.1364/OL.19.001325 [4] STEEGMUELLER U, KUEHNELT M, UNOLD H, et al. Progress in ultra-compact green frequency doubled optically pumped surface emitting lasers[J]. Proceedings of the SPIE, 2009, 7198:719807-719814. doi: 10.1117/12.809319 [5] MUKHOPADHYAY P K, SHARMA S K, RANGANATHAN K, et al. Efficient and high-power intracavity frequency doubled diode-side-pumped Nd:YAG/KTP continuous wave (CW) green laser[J]. Optics Communications, 2006, 259(2):805-811. doi: 10.1016/j.optcom.2005.09.045 [6] FEI Q, ZOU X L, ZHOU H, et al. Compact and high-efficient intracavity frequency doubling solid-state TEM00 green lasers by PPMgOLN crystal[J]. Applied Laser, 2014, 34(6):598-601(in Chinese). doi: 10.3788/AL [7] ZHU P, LI D J, HU P X, et al. High efficiency 165W near-diffraction-limited Nd:YVO4 slab oscillator pumped at 880nm[J]. Optics Letters, 2008, 33(17):1930-1932. doi: 10.1364/OL.33.001930 [8] MCDONAGH L, WALLENSTEIN R. Low-noise 62W CW intracavity-doubled TEM00 Nd:YVO4 green laser pumped at 888nm[J]. Optics Letters, 2007, 32(7):802-804. doi: 10.1364/OL.32.000802 [9] JIANG D Sh, ZHAO H, WANG J J, et al. 120W diode pumped green Nd:YAG laser[J]. High Power Laser and Particle Beams, 2005, 17(s1):7-10(in Chinese). [10] JI F, YAO J Q, ZHANG B G, et al. 2.1W continuous wave green light output by first-order quasi-phase-matched intracavity second harmonic generation[J]. Chinese Journal of Lasers, 2006, 33(10):1314-1318(in Chinese). [11] LIU J H, SHAO Z Sh, ZHANG H J, et al. Diode-laser-array end-pumped intracavity frequency-doubled 3.6W CW Nd:GdVO4/KTP green laser[J]. Optics Communications, 2000, 173(1/6):311-314. [12] YANG K J, ZHAO Sh Zh, LI G Q, et al. Modeling of a diode-pumped acousto optically Q-switched intracavity doubling Nd:GdVO4/KTP green laser[J]. Optical Engineering, 2005, 44(11):114203. doi: 10.1117/1.2130334 [13] XUE Q H, ZHENG Q, BU Y K, et al. High-power efficient diode-pumped Nd:YVO4/LiB3O5 457nm blue laser with 4.6W of output power[J]. Optics Letters, 31(8):1070-1072. doi: 10.1364/OL.31.001070 [14] BOYD G D, KLEINMAN E A. Parametric interaction of focused Gaussian light beam[J]. Journal of Applied Physics, 1968, 39(8):3597-3639. doi: 10.1063/1.1656831 [15] LÜ B D. Laser optics-beam characterization, propagation and tansformation, resonator technology and physics[M]. Beijing:Higher Education Press, 2002:98-102(in Chinese). [16] TAN Ch Q, XUE Q H, JIA F Q, et al. LD-pumped Nd:YAG outcavity fourth harmonic generation high power ultraviolet laser[J]. Acta Photonica Sinica, 2005, 34(9):1289-1292(in Chinese). [17] ZHENG B R, YAO Y Ch, HUANG Ch Y. Experiment of double-end-pumped intra-cavity triple frequency ultraviolet laser[J]. Laser Technology, 2013, 37(2):155-157(in Chinese). [18] TIAN M, WANG F, CHE Y. LD pumped QCW 355nm laser by extra-cavity sum-frequency-mixing using double synchronized wavelength lasers[J]. Laser Technology, 2014, 38(6):804-806(in Chinese). [19] XUE Q H, ZHENG Q, YE Z Q, et al. Analysis of eigenstates on LD-pumped Nd:YVO4/KTP intracavity-doubled green laser[J]. Chinese Journal of Lasers, 2003, 30(10):877-880(in Chinese).