高级检索

大气及真空条件下玻璃激光焊接对比

陈根余, 钟沛新, 程少祥

陈根余, 钟沛新, 程少祥. 大气及真空条件下玻璃激光焊接对比[J]. 激光技术, 2022, 46(3): 362-367. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.010
引用本文: 陈根余, 钟沛新, 程少祥. 大气及真空条件下玻璃激光焊接对比[J]. 激光技术, 2022, 46(3): 362-367. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.010
CHEN Genyu, ZHONG Peixin, CHENG Shaoxiang. Laser-assisted glass frit bonding in air and vacuum[J]. LASER TECHNOLOGY, 2022, 46(3): 362-367. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.010
Citation: CHEN Genyu, ZHONG Peixin, CHENG Shaoxiang. Laser-assisted glass frit bonding in air and vacuum[J]. LASER TECHNOLOGY, 2022, 46(3): 362-367. DOI: 10.7510/jgjs.issn.1001-3806.2022.03.010

大气及真空条件下玻璃激光焊接对比

基金项目: 

国家重点研发计划资助项目 2017YFB1104802

详细信息
    作者简介:

    陈根余(1965-), 男, 博士, 教授, 博士生导师, 现主要从事激光制造及激光微细加工方面的研究。E-mail: hdgychen@163.com

  • 中图分类号: TG456.7;TN249

Laser-assisted glass frit bonding in air and vacuum

  • 摘要: 为了验证真空环境对玻璃激光焊接气孔形成的影响,采用在大气及真空条件下进行玻璃激光焊接对比试验的方法,对两种条件下气孔率随激光功率的变化及玻璃料向两端扩展的程度进行了理论分析和实验验证。结果表明,气孔的成因不仅是玻璃料中残存的气体,功率提高至45W后,不稳定成分的升华与分解产生了更多气体,进一步提高了气孔率; 真空条件对焊缝扩展影响较小,无明显差异;而真空条件下的气孔率要显著大于在大气条件下的气孔率; 真空条件下气孔面积更大,但增大的气孔面积并不能扩大玻璃料的扩展宽度。该研究结果进一步地揭示了玻璃激光焊接下气孔的形成机制。
    Abstract: In order to verify the effect of vacuum environment on the formation of pores in glass laser welding, the comparative test of glass laser welding under atmospheric and vacuum conditions was adopted.Theoretically analyze and experimentally verify of the change of porosity with laser power and the extent of expansion of glass frit to both ends under the two conditions was then carried out. The results show that, the cause of the porosity is not only the residual gas in the glass frit, but also the sublimation and decomposition of unstable components to produce more gas after the power is increased to 45W, which further improves the pores. It is found that the vacuum condition has little effect on the bonding expansion, and there is no obvious difference. The porosity under vacuum condition is significantly greater than that under atmospheric condition. The porosity is larger under vacuum condition, but the enlargement of porosity can't enlarge the expansion width of glass frit. The results further reveal the formation mechanism of pores under laser-assisted glass frit bonding.
  • Figure  1.   Heating process curv

    Figure  2.   Schematic diagram of laser-assisted glass frit bonding

    Figure  3.   Air jig

    Figure  4.   Vacuum jig

    Figure  5.   Laser-assisted glass frit bonding apparatus diagram

    Figure  6.   Bonding morphology in air

    Figure  7.   Bonding morphology in vacuum

    Figure  8.   Bonding morphology under vacuum by metallographic microscope

    Figure  9.   a—bonding width changes curve with laser power b—porosity changes curve with laser power

    Table  1   Thermal properties of material used in the study

    material transition temperature/℃ softening point/℃ coefficient of thermal expansion/ (10-7-1)
    glass substrate 722 971 31.7
    glass frit 343 428 48
    下载: 导出CSV

    Table  2   Bonding parameters

    number laser power P/W welding speed v/ (m·min-1) defocusing amount D/mm
    1 37 0.1 -15
    2 40 0.1 -15
    3 45 0.1 -15
    4 50 0.1 -15
    5 55 0.1 -15
    6 60 0.1 -15
    下载: 导出CSV
  • [1]

    CRUZ R, da CRUZ R J A, MAÇAIRA J, et al. Glass-glass laser-assisted glass frit bonding[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2(12): 1949-1956. DOI: 10.1109/TCPMT.2012.2212195

    [2]

    WU Q, LORENZ N, KEVIN M. Glass frit as a hermetic joining layer in laser based joining of miniature devices[J]. IEEE Transactions on Components and Packaging Technologies, 2010, 33(2): 470-477. DOI: 10.1109/TCAPT.2010.2045000

    [3]

    CHEN G Y, HE J, ZHONG P X, et al. Study on the porosity control during laser welding of glass[J]. Laser Technology, 2021, 45(3): 286-291(in Chinese).

    [4]

    SU Sh X, YU Y L, FEI W, et al. Research of characteristics of weld formation of aluminum alloy by high power fiber laser welding[J]. Laser Technology, 2017, 41(3): 322-327 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201703004.htm

    [5]

    BARDIN F, KLOSS S, WANG Ch H, et al. Laser bonding of glass to silicon using polymer for microsystems packaging[J]. Journal of Microelectromechanical Systems, 2007, 16(3): 571-580. DOI: 10.1109/JMEMS.2007.896704

    [6]

    RIBEIRO F, MACAIRA J, CRUZ R, et al. Laser assisted glass frit sealing of dye-sensitized solar cells[J]. Solar Energy Materials and Solar Cells, 2012, 96: 43-49. DOI: 10.1016/j.solmat.2011.09.009

    [7]

    TAO W, MA Y A, CHEN Y B, et al. The influence of adhesive viscosity and elastic modulus on laser spot weld bonding process[J]. International Journal of Adhesion and Adhesives, 2014, 51: 111-116. DOI: 10.1016/j.ijadhadh.2013.12.003

    [8]

    HUANG M H, ZHANG Q M, LV Q T, et al. UV-laser welding process of copper-plated glass[J]. Chinese Journal of Lasers, 2020, 47(10): 1002007(in Chinese). DOI: 10.3788/CJL202047.1002007

    [9]

    XIAO Y Y, WANG W, WU X Y, et al. Process design based on temperature field control for reducing the thermal residual stress in glass/glass laser bonding[J]. Optics & Laser Technology, 2017, 91: 85-91. DOI: 10.1016/j.optlastec.2016.12.016

    [10]

    PANG J W, WANG Ch, CAI Y K. Research progress of laser processing technology for glass materials[J]. Laser Technology, 2021, 45(4): 417-428(in Chinese).

    [11]

    FU K, LI Y, YIN L Q, et al. Effect of CuO on laser absorption in glass to glass laser bonding[C]//2014 15th International Conference on Electronic Packaging Technology. New York, USA: IEEE, 2014: 484-488.

    [12]

    TIAN R, YIN L Q, LI Y, et al. The effect of glass frit paste levelling property on encapsulation[C]//2018 19th International Conference on Electronic Packaging Technology (ICEPT). New York, USA: IEEE, 2018: 1097-1101.

    [13]

    FU X L, TIAN R, LI Y, et al. Laser bonding of glass and glass with constant temperature output[C]//2018 19th International Confe-rence on Electronic Packaging Technology (ICEPT). New York, USA: IEEE, 2018: 1084-1088.

    [14]

    KIND H, GEHLEN E, ADEN M, et al. Laser glass frit sealing for encapsulation of vacuum insulation glasses[J]. Physics Procedia, 2014, 56: 673-680. DOI: 10.1016/j.phpro.2014.08.075

    [15]

    BEDJAOUI M, AMIRAN J, BRUN J. Ultrathin glass to ultrathin glass bonding using laser sealing approach[C]//2019 IEEE 69th Electronic Components and Technology Conference (ECTC). New York, USA: IEEE, 2019: 995-1001.

    [16]

    EMAMI S, MARTINS J, ANDRADE L, et al. Low temperature hermetic laser-assisted glass frit encapsulation of soda-lime glass substrates[J]. Optics and Lasers in Engineering, 2017, 96: 107-116. DOI: 10.1016/j.optlaseng.2017.04.006

    [17]

    PENG G Sh. Laser welding characteristics of aluminum and nickel-base alloys under vacuum environment[D]. Harbin: Harbin Institute of Technology, 2015: 48-54 (in Chinese).

    [18]

    MIAO H, HE Q, ZHANG Sh W, et al. Study on pores control of va-cuum plate glazing by laser sealing[J]. Laser Technology, 2019, 43(1): 38-42 (in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201901008.htm

    [19]

    LIU Y F, CHEN D E, LIN L W, et al. Glass frit bonding with controlled width and height using a two-step wet silicon etching procedure[J]. Journal of Laser Micro Nanoengineering, 2016, 26: 035018. DOI: 10.1088/0960-1317/26/3/035018

    [20]

    LORENZ N, MILLAR S, DESMULLIEZ M, et al. Hermetic glass frit packaging in air and vacuum with localized laser joining[J]. Journal of Laser Micro Nanoengineering, 2011, 21: 045039.

图(9)  /  表(2)
计量
  • 文章访问数:  11
  • HTML全文浏览量:  0
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-21
  • 修回日期:  2021-04-08
  • 发布日期:  2022-05-24

目录

    /

    返回文章
    返回