-
图 2为扫腔时两种情况下的透射峰(曲线A, E)、鉴频信号(曲线B, F)及扫描信号(曲线C, G),透射峰的不对称是由于倍频晶体的热效应造成[16]。可以看出,由于内调制稳频在压电陶瓷上加有一个低频调制信号(74.6kHz),导致了腔透射峰的微小抖动,即使在腔锁定后低频信号依然存在,在一定程度上影响了输出蓝光的稳定性。
内调制稳频操作比较简单,由于调制信号直接加在腔上,因此产生的鉴频信号信噪比较高。PDH稳频则是在基频光上调制的高频信号(26.4MHz),不会对腔的锁定造成干扰,能够很好地消除低频噪声,因此输锁定倍频腔后输出的447.3nm蓝光具有较好的高斯横模特性,如图 3所示。
实验中测量了用两种方法锁腔后蓝光功率随着注入光功率变化而改变的情况,结果如图 4所示。其中黑色线是理论值,星和圈分别为内调制和PDH锁腔后的蓝光功率。可以看出,在不同入射光功率下,用两种方法锁腔后输出的蓝光功率基本相等。
理论上,倍频光与基频光功率的关系可以表示为[6]:
$\sqrt {{P_2}/{P_1}} {\left[ {2 - \sqrt {1 - {T_1}} \left( {2 - L - \mathit{\Gamma }\sqrt {{P_2}/{E_{{\rm{NL}}}}} } \right)} \right]^2} - 4{T_1}\sqrt {{E_{{\rm{NL}}}}{P_1}} = 0 $
(1) 式中,P2为输出蓝光功率,P1为红外光功率,T1为倍频腔前腔镜对红外光的透射率(5%),L为除了T1以外的内腔损耗(实验中测量值为2.7%),非线性损耗Γ=ENL+Γabs,ENL为晶体的单次穿过效率(实验中测量值为0.89%/W),Γabs为晶体对蓝光的吸收,根据参考文献[16]和参考文献[17],晶体对蓝光的吸收系数为10%/cm~20%/cm,这里取Γabs=0.1ENL。从图 4中可以看出,在不同注入光功率时用两种方法得到的蓝光功率基本相等。在注入光功率较低时,实验值与理论值符合较好,而随着红外光功率的增加,实验值略小于理论值,这是由于在较高功率下,晶体对蓝光及红外光吸收增大造成的。在注入光功率为350mW时,输出蓝光功率约为178mW,相应的倍频效率为50.8%。
利用参量下转换产生894.6nm非经典光的实验对抽运光的稳定性要求较高,因此作者还测量了两种方法锁定后的蓝光功率起伏,结果如图 5所示。从图中可以看出,利用PDH锁定倍频腔后输出的蓝光稳定性比内调制高,二者2h内功率起伏分别为3.4%(内调制)和2.3%(PDH)。
内调制技术和Pound-Drever-Hall技术对894.6nm倍频腔的稳频比较
Comparison of frequency locking of 894.6nm frequency doubling cavity using intra-modulation technology and Pound-Drever-Hall technology
-
摘要: 为了对抽运源的稳频技术做出对比和选择,采用内调制技术和相位调制光外差技术,以周期性极化KTP晶体作为非线性晶体,实现了894.6nm连续光两镜驻波倍频腔的稳频运转。结果表明,在不同注入光功率下,用这两种方法锁定倍频腔后获得的蓝光功率基本相同;在最大注入光功率为350mW时,获得178mW的447.3nm蓝光,相应的转化效率为50.8%;在最大注入光功率下,利用内调制技术和相位调制光外差稳频技术获得的蓝光在2h内功率起伏分别为3.4%和2.3%。该研究对获得稳定输出的447.3nm蓝光用来制备铯原子D1线的非经典光的实验是有帮助的。Abstract: In order to compare and select the technology of locking frequency of pump source, by using intra-modulation technology and Pound-Drever-Hall(PDH) technology separately, and choosing periodically poled KTP(PPKTP) crystal as nonlinear crystal, stable frequency operation of 894.6nm continuous light two-mirror standing wave frequency doubling cavity was realized. The results show that frequency doubling cavity has the same blue light power output using two locking technologies and under different input light powers. 447.3nm blue light of 178mW is obtained when the maximum fundamental light power of 350mW and the corresponding conversion efficiency is 50.8%. Under the condition of the maximum fundamental power, the power fluctuation of blue light obtained by intra-modulation technology and PDH technology are 3.4% and 2.3% in 2h respectively. The research is helpful for preparing stable output of 447.3nm blue light to obtain nonclassical light source at D1 line of cesium atom.
-
[1] LANCASTER G P T, CONROY R S, CLIFFORD M A, et al. A polarisation spectrometer locked diode laser for trapping cold atoms[J]. Optics Communications, 1999, 170(1/3):79-84. [2] YUAN Z S, CHEN Y A, ZHAO B, et al. Experimental demonstration of a BDCZ quantum repeater node[J]. Nature, 2008, 454(28):1098-1101. [3] APPEL J, FIGUEROA E, KORYSTOV D, et al. Quantum memory for squeezed light[J]. Physical Review Letters, 2008, 100(9):093602. doi: 10.1103/PhysRevLett.100.093602 [4] HALD J, SØRENSEN J L, SCHORI C, et al. Spin squeezed atoms:A macroscopic entangled ensemble created by light[J]. Physical Review Letters, 1999, 83(7):1319-1322. doi: 10.1103/PhysRevLett.83.1319 [5] POLZIK E S, CARRI J, KIMBLE H J. Spectroscopy with squeezed light[J]. Physical Review Letters, 1992, 68(20):3020-3023. doi: 10.1103/PhysRevLett.68.3020 [6] WEN X, HAN Y S, BAI J D, et al. Cavity-enhanced frequency doubling from 795nm to 397.5nm ultra-violet coherent radiation with PPKTP crystals in the low pump power regime[J]. Optics Express, 2014, 22(26):32293-32300. doi: 10.1364/OE.22.032293 [7] LI J H, ZHENG H Y, ZHANG L, et al. 397.5nm laser produced by resonant frequency doubling with ppktp crystal[J]. Acta Sinica Quantum Optica, 2011, 17(1):30-33(in Chinese). [8] HETET G, GLOCKL O, PILYPAS K A, et al. Squeezed light for bandwidth-limited atom optics experiments at the rubidium D1 line[J]. Journal of Physics, 2007, B40(1):221-226. [9] TANIMURA T, AKAMATSU D, YOKOI Y, et al. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4[J]. Optics Letters, 31(15):2344-2346. doi: 10.1364/OL.31.002344 [10] WANG F Y, SHI B S, CHEN Q F, et al. Efficient cw violet-light generation in a ring cavity with a periodically poled KTP[J]. Optics Communications, 2008, 281(15/16):4114-4117. [11] CAO Y J, LIU Y, CHEN G L, et al. Study on vibrational stabilization of cylindrical cavities[J]. Laser Technology, 2012, 36(2):265-267(in Chinese). [12] GENG W B, HU Sh L, SHAO H F. Design of laser frequency stabilization systems based on FPGA and Pound-Drever-Hall technique[J]. Laser Technology, 2014, 38(5):665-668(in Chinese). [13] ZHANG Y, HOSHI R, YAMAGUCHI D, et al. Generation of quasi-cw deep ultraviolet light below 200nm by an external cavity with a Brewster-input KBBF prism coupling device[J]. Optics Communications, 2013, 295(10):176-179. [14] FENG J X, LI Y M, TIAN X T, et al. Noise suppression, linewidth narrowing of a master oscillator power amplifier at 1.56μm and the second harmonic generation output at 780nm[J]. Optics Express, 2008, 16(16):11871-11877. doi: 10.1364/OE.16.011871 [15] GE Q, YU L, JIA X J, et al. Extracavity frequency doubled red laser with single frequency[J]. Chinese Journal of Lasers, 2009, 36(7):1744-1748(in Chinese). doi: 10.3788/JCL [16] HAN Y S, WEN X, BAI J D, et al. Generation of 130mW of 397.5nm tunable laser via ring-cavity-enhanced frequency doubling[J].Journal of the Optical Society of America, 2014, B31(8):1942-1947. [17] DENG X, ZHANG J, ZHANG Y C, et al. Generation of blue light at 426nm by frequency doubling with a monolithic periodically poled KTiOPO4[J].Optics Express, 2013, 21(22):25907-25911. doi: 10.1364/OE.21.025907