-
参考文献[2]、参考文献[6]中在“牛眼”结构的基础上提出了一种表面等离子体激元喇叭结构,能在较宽的视场范围内实现有效的广角增益透射。表面等离子体喇叭型结构广角集光天线如图 3所示,结构参量有:凹槽的总个数2n2,凹槽的宽度w和深度h,透射小孔的宽度d和深度t,凹槽的周期P2和凹槽离透射小孔的距离a,倾斜角φ。其异常透射增强特性取决于干涉效应和SPP单向传播增强效应。
对于该结构,参考文献[2]中给出了其透射增强的理论解释,首先约定:对倾斜部位来讲,光从右侧入射时,角度取负值;光从左侧入射时,角度取正值。如图 3b所示,由几何关系可得:θl=θ+φ,θr=θ-φ,其中θl和θr分别为入射光与喇叭型结构左右斜边法线的夹角,θ为入射光与垂直方向的夹角。当光的入射角-φ < θ < φ时,θl>0,θr < 0。由约定和SPP单向传播增强效应可知,两侧沿着透射小孔传播的SPP被增强,远离透射小孔的SPP被减弱。由能量守恒定律,为了使激发的SPP幅度最大,要求指向透射小孔传播的SPP与该侧入射的空间光干涉相消,这样进入凹槽的光能最少,激发SPP幅度最大。同时要求不同凹槽激发出的向着透射小孔传播的SPP之间干涉加强。由干涉理论得到入射光与SPP波之间的相位关系应满足如下两式:
$\mathit{\psi + }\frac{{2{\rm{ \mathit{ π} }}{{\rm{P}}_2}}}{{{\mathit{\lambda }_{{\rm{SPP}}}}}} - \frac{{2{\rm{ \mathit{ π} }}{\mathit{P}_2}\sin \mathit{\theta }}}{{{\mathit{\lambda }_0}}} = \left( {2{m_1} + 1} \right){\rm{ \mathit{ π} }} $
(1) $\frac{{2{\rm{ \mathit{ π} }}{{\rm{P}}_2}}}{{{\mathit{\lambda }_{{\rm{SPP}}}}}}{\rm{ = 2}}{\mathit{m}_2}{\rm{ \mathit{ π} }} $
(2) 式中, m1,m2是整数,ψ为采样的相移,λ0为入射光波长,则有效的折射率为:${n_{{\rm{SPP}}}} = \sqrt {{\mathit{\varepsilon }_{{\rm{air}}}}{\mathit{\varepsilon }_{{\rm{Au}}}}/\left( {{\mathit{\varepsilon }_{{\rm{air}}}} + {\mathit{\varepsilon }_{{\rm{Au}}}}} \right)} $。在很大的角度范围内,ψ≈π[17-18]。解出满足(1)式、(2)式的P2和θ为:
$\left\{ \begin{array}{l} {P_2} = 2{\mathit{\lambda }_{{\rm{SPP}}}}\\ \mathit{\theta = }{\rm{arcsin}}\left( {\frac{{{\mathit{n}_{{\rm{SPP}}}}}}{2}} \right) \end{array} \right. $
(3) 这时,由凹槽阵列激发的SPP向透射小孔传播的能量最大。因此,可以计算出喇叭型结构的凹槽周期结构参量P2=2λSPP=3080nm和倾斜角φ=30°。其它结构参量的优化方法与“牛眼”结构参量的优化方法类似。首先确定透射小孔的结构参量,透射小孔的结构参量要满足类法布里-珀罗(Febry-Perot, F-P)腔共振条件,经数值模拟计算后得到透射小孔深度t=1000nm,透射小孔宽度d=50nm。与“牛眼”结构透射小孔的优化参量一样,因为其数值主要由选取的入射波长决定。在对“牛眼”结构的研究中,已经得到单个凹槽最有效激发表面等离子体激元时的结构参量w=862nm和h=345nm。研究表明,凹槽的深度和个数对异常透射增强系数有着重要的影响。图 4a是凹槽的深度和个数对透射增强系数的影响,由图 4a可见,凹槽的深度和个数对透射增强系数的影响在“牛眼”结构和喇叭型结构中是不同的,在喇叭结构中并没有出现如“牛眼”结构般的凹槽深度越小、对应的凹槽饱和个数越多的现象。对喇叭型结构来说,凹槽的饱和个数与凹槽的深度关系不大,饱和个数几乎一样。但垂直入射下,深凹槽更能够提高透射增强系数。这是因为对于喇叭型结构来讲,光垂直入射时,凹槽实际感受到的光是斜入射的,优化深度的凹槽更有利于SPP波的激发。由图 4b可以看出,当凹槽深度h=345nm时,在±30°范围内,喇叭型结构具有良好的广角响应性能。
Figure 4. a—relationship between transmission amplitude and groove number under the vertical incidence of horn structure b—relationship between transmission enhancement coefficient and the incident angle of horn structure
由图 5可知,经过结构参量的优化,垂直入射下,喇叭结构的透射增强系数比参考文献[2]中的45高3倍,而在±5°~±26°范围内的平坦响应区,平均透射增强系数为10左右,比参考文献[2]中的4高2.5倍。至此,得到1550nm波长光入射下,采用贵金属金的喇叭型结构的优化结构参量为:凹槽深度h=345nm,凹槽宽度w=862nm,凹槽的周期P2=2λSPP=3080nm,倾斜角φ=30°,透射小孔深度t=1000nm,透射小孔宽度d=50nm,凹槽离透射小孔的距离a=850nm。
宽视场高增益亚波长结构集光天线的优化设计
Optimization design of optical antenna with wide field-of-view high-gain subwavelength structure
-
摘要: 为了优化设计自由空间的高增益广角集光天线,采用有限元数值计算方法分析不同结构参量对“牛眼”结构、喇叭型结构及碗型结构的透射增强特性的影响,得到了凹槽个数与3种结构的表面等离子体异常透射增强系数之间的关系,获得了碗型亚波长结构光学天线的透射增强优化结构参量。结果表明,在单个凹槽结构能够有效激发表面等离子基元时,喇叭型结构光学天线的透射增强系数得到有效提高;通过结构参量优化,当入射角在±5°内时,喇叭型结构的透射增益倍数为20倍~140倍,在±5°~±26°之间获得较为平坦的增益,平均透射增强系数为10,和现有的结构参量相比,性能提高1倍;碗型结构在入射光为±60°的范围内有着较好的透射增强特性,平滑区的平均透射增强系数为10。碗型结构比喇叭结构具有更加出色的广角传输特性。Abstract: In order to optimize the design of wide field-of-view high-gain optical antenna in free space, the finite element method was utilized to analyze the effect of different structure parameters on transmission enhancement characterization of bull's eye structure, horn-shaped structure and bowl-shaped structure respectively. The relationship between the numbers of slit and the coefficient of surface-plasmon-enhanced extraordinary transmission was obtained, and the optimal structure parameters of bowl-shaped optical antenna with subwavelength structure was gotten. The results show that for horn-shaped optical antenna, when the single silt can excite the strongest surface plasmon polaritons(SPP), the coefficient of transmission enhancement has lager value. By optimizing the structural parameters, the value of horn-shaped structure enhancement coefficient varies from 20 times to 140 times when the incident angle θ is within ±5°. The smooth enhanced gain is gotten at the incident angle in the range from ±5°to ±26°. The average value of the enhancement coefficient is 10. The performance is doubled compared with the performance of present structural parameters. Bowl-shaped structure has a good enhanced transmission character at the incident angle in the range of ±60° and the average value of the enhancement coefficient is 10 in the smooth enhanced transmission area. The wide field-of-view transmission character of the bowl-shaped is better than of the horn-shaped.
-
-
[1] BLOOM S, KOREVAAR E, SCHUSTER J, et al. Understanding the performance of free-space optics[J]. Journal of Optical Networking, 2003, 2(6):178-200. [2] CAI L, LI G Y, XU A Sh. Wide field-of-view free-space optical receiver based on surface plasmon polaritons[J].China Communications, 2009, 6(3):53-59(in Chinese). [3] RAMIREZ-INIGUEZ R, GREEN R J. Optical antenna design for indoor optical wireless communication systems[J]. International Journal of Communication Systems, 2005, 18(3):229-245. doi: 10.1002/(ISSN)1099-1131 [4] JEONG W, KAVEHRAD M, JIVKOVA S. Broadband infrared access with a multi-spot diffusing configuration:performance[J]. International Journal of Wireless Information Networks, 2001, 8(1):27-36. doi: 10.1023/A:1011381528988 [5] EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through subwavelength hole arrays[J]. Nature, 1998, 391(6668):667-669. doi: 10.1038/35570 [6] LI G Y, CAI L, XIAO F, et al. Plasmonic corrugated horn structure for optical transmission enhancement[J]. Chinese Physics Letters, 2009, 26(12):124205. doi: 10.1088/0256-307X/26/12/124205 [7] ZHANG X F, YUAN M H. Analysis of terahertz wave through a slit with parallel grooves on both sides[J]. Laser Technology, 2013, 37(4):533-536(in Chinese). [8] JANSSEN O T, URBACH H P, 'THOOFT G W. On the phase of plasmons excited by slits in a metal film[J]. Optics Express, 2006, 14(24):11823-11832. doi: 10.1364/OE.14.011823 [9] BERENGER J P. A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics, 1994, 114(2):185-200. [10] RAKIC A D, DJURISIC A B, ELAZAR J M, et al. Optical properties of metallic films for vertical-cavity optoelectronic devices[J]. Applied Optics, 1998, 37(22):5271-5283. doi: 10.1364/AO.37.005271 [11] JANSSEN O T, URBACH H P, 'THOOFT G W. Giant optical transmission of a subwave-length slit optimized using the magnetic field phase[J]. Physical Review Letters, 2007, 99(4):043902. doi: 10.1103/PhysRevLett.99.043902 [12] DEGIRON A, EBBESEN T W. Analysis of the transmission process through single apertures surrounded by periodic corrugations[J]. Optics Express, 2004, 12(16):3694-3700. doi: 10.1364/OPEX.12.003694 [13] MARTIN-MORENO L, GARCIA-VIDAL F J, LEZEC H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Physical Review Letters, 2003, 90(90):167401. [14] GARCIA-VIDAL F J, LEZEC H J, EBBESEN T W, et al. Multiple paths to enhance optical transmission through a subwavelength slit[J]. Physical Review Letters, 2003, 90(21):213901. doi: 10.1103/PhysRevLett.90.213901 [15] YU L B, LIN D Zh, CHEN Y Ch, et al. Physical origin of directional beaming emitted from a subwavelength slit[J]. Physical Review, 2005, B71(4):041405. [16] ISHI T, FUJIKATA J, OHASHI K. Large optical transmission through a single subwavelength hole associated with a sharp-apex grating[J]. Japanese Journal of Applied Physics, 2005, 44(4):L170-L172. doi: 10.1143/JJAP.44.L170 [17] LI G Y, XU A Sh. Phase shift of plasmons excited by slits in a metal film illuminated by oblique incident TM plane wave[J]. Proceedings of the SPIE, 2008, 7135:71350T. doi: 10.1117/12.803469 [18] NESCI A, DÄNDLIKER R, HERZIG H P. Quantitative amplitude and phase measurement by use of a heterodyne scanning near-field optical microscope[J]. Optics Letters, 2001, 26(4):208-210. [19] ZHENG Y, DU J L. Simulation of interference field of multi-beam surface plasma polaritons[J].Laser Technology, 2013, 37(1):28-31(in Chinese). [20] LEZEC H J, THIO T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Optics Express, 2004, 12(16):3629-3651. doi: 10.1364/OPEX.12.003629