-
对荧光共振能量转移最早研究的是施主和受主染料的荧光能量转移方式,其中,非辐射Förster转移是最主要的一种机制[17-18]。单个施主分子和受主分子之间的能量转移效率Ef取决于施主与受主分子的浓度,以及施主和受主分子之间的距离,即:
${E_{\rm{f}}} = R_0^6/\left( {R_0^6 + {r^6}} \right) $
(1) 式中, r为施主和受主分子间的距离;R0是Förster距离,由施主和受主染料及其吸收/辐射谱决定。实验中作者采用的施主和受主染料分别是香豆素6(coumain 6,Cou6)和罗丹明6G(R6G)。为了确定两种染料分子的较高能量传递系数,首先测定了430nm脉冲激光抽运下,比色皿容器中不同浓度比混合液的荧光能量传递过程,图 1所示为不同浓度配比下两种染料混合液的荧光光谱。R6G的浓度CR6G和Cou6的浓度CCou6配比分别为0.2mmol·L-1/0.1mmol·L-1,1mmol·L-1/0.1mmol·L-1,1.5mmol·L-1/0.1mmol·L-1,2mmol·L-1/0.1mmol·L-1,3mmol·L-1/0.1mmol·L-1,3mmol·L-1/0mmol·L-1和0mmol·L-1/3mmol·L-1时对应图 1中的不同曲线。430nm对应Cou6较强的吸收峰,而对应R6G最弱的吸收峰。测试实验中,保持Cou6的浓度(CCou6=0.1mmol/L)不变,逐渐改变R6G的浓度。由于430nm抽运时,不同浓度的R6G荧光出射强度不同,因此只对比观测图 1中Cou6的荧光光谱变化。实验结果表明,当Cou6和R6G的浓度分别为0.1mmol/L和3mmol/L时,可实现较高的荧光能量转移,此浓度下计算出的距离r1=5.04nm。在此浓度下,为达到最高的转移效率,施主和受主的浓度应相等,即1.55mmol/L。在以下激光产生过程中,选用两种染料的浓度分别为1.55mmol/L。
Figure 1. Relationship between fluorescence intensity of FRET signal and wavelength at various concentrations of R6G (donor) and Cou6 (acceptor) under the same pump energy
FRET微流激光实验所用光微流芯片如图 2a所示,它是由微流通道和F-P微腔构成。其中F-P微腔是由一个平面镜和一个凹面镜形成,腔长为L,为满足F-P稳定腔条件,腔长L需小于凹面腔的最小曲率半径R。凹面结构采用CO2激光器微加工熔融石英玻璃表面形成;其表面形状可用高斯函数近似拟合(见图 2b),结构参量如深度t、宽度d及最小曲率半径R均可由CO2激光加工条件控制。实验中制备了两类结构参量不同的凹面形状,分别为Ⅰ类(t=1μm~4μm,d=30μm~40μm,R=90μm~200μm)和Ⅱ类(t=8μm ~13μm,d=85μm~105μm,R=250μm~400μm)结构。详细的CO2激光加工条件和微流芯片组装过程,请参考作者近期的工作[16]。平面镜和凹面镜分别由高反射率介质膜构成,其中Ⅰ类结构的介质膜高反中心在570nm,Ⅱ类结构的介质膜反射中心在600nm。
Figure 2. a—optofluidic chip with microfluidic channel and F-P microcavity b—profile of concave microwell with experimental data and Gaussian fit data c—experimental setup of FRET laser generation
实验中采用430nm脉冲光学参量振荡器(optical parametric oscillator, OPO)激光器,脉宽5ns,重复频率20Hz作为抽运源,实验装置示意图如图 2c所示,抽运能量可通过能量计实时测量。激光光束通过透镜聚焦后垂直入射到F-P微腔中,焦点处光斑直径约为100μm。增益介质Cou6(CCou6=1.55mmol/L)和R6G(CR6G=1.55mmol/L)溶于无水乙醇(折射率n=1.36)中,通过蠕动泵注入微流通道中,通道中溶液的流动速率约为3mm/s。
基于法布里-珀罗微腔的光微流FRET激光产生
Generation of optofluidic FRET laser based on Fabry-Perot microcavity
-
摘要: 为了实现低阈值光微流荧光共振能量转移(FRET)激光,基于制备的高品质因子、高稳定法布里-珀罗(F-P)微腔,采用间接抽运方法研究了两种F-P谐振腔中光微流FRET激光的产生。直接抽运施主染料,使得施主染料通过FRET的方式把能量传递给受主染料,从而实现受主染料的间接能量抽运。结果表明,在此种抽运方式下,F-P光微流激光腔中实现了0.48μJ/mm2的低激光抽运能量密度阈值;并可通过FRET激光产生的形式实现对低浓度物质的检测。Abstract: In order to achieve low-threshold optofluidic fluorescence resonant energy transfer(FRET) laser, based on Fabry-Perot (F-P) microcavity with high quality factor and stability, the generation of optofluidic FRET laser in two types of F-P resonator was studied by using indirect pumping method. Firstly, donor molecules were pumped directly, and then, the excited energies of donor molecules were transferred to acceptor molecules through FRET to realize the indirect optical pumping of the acceptor. Experimental results show that the low energy density threshold of laser pump is 0.48μJ/mm2 in F-P optofluidic cavity. The results indicate that the detection of low concentration substance can be realized by FRET laser generation in terms of laser detection.
-
Figure 3. Laser intensity under different conditions for F-P cavities on type Ⅰ chip
a—signal emission intensity and wavelength of Cou6+R6G and Ip=1.62μJ/mm2 b—signal emission intensity and wavelength of R6G and Ip=12.54μJ/mm2 c—signal emission intensity and wavelength of Cou6 and Ip=2μJ/mm2 d—laser intensity vs. pump density of Cou6+R6G and R6G
Figure 4. Laser intensity under different conditions for F-P cavities on type Ⅱ chip
a—signal emission intensity and wavelength of Cou6+R6G and Ip=0.52μJ/mm2 b—signal emission intensity and wavelength of R6G and Ip=6.07μJ/mm2 c—signal emission intensity and wavelength of Cou6 and Ip=5.51μJ/mm2 d—laser intensity vs. pump density of Cou6+R6G and R6G
Figure 5. Emission intensity under different conditions for F-P cavities on type Ⅰ chip
a—signal emission intensity and wavelength of R6G and Ip=76μJ/mm2 b—signal emission intensity and wavelength of R6G+R6G and Ip=1.73μJ/mm2 c—signal emission intensity and wavelength of Cou6 and Ip=1.4μJ/mm2 d—laser intensity vs. pump density of Cou6+R6G
-
[1] PSALTIS D, QUAKE S R, YANG C. Developing optofluidic technology through the fusion of microfluidics and optics[J]. Nature, 2006, 442(7101):381-386. doi: 10.1038/nature05060 [2] FAN X D, WHITE I M. Optofluidic microsystems for chemical and biological analysis[J]. Nature Photonics, 2011, 5(10):591-597. doi: 10.1038/nphoton.2011.206 [3] FAN X, YUN S H. The potential of optofluidic biolasers[J]. Nature Methods, 2014, 11(2):141-147. doi: 10.1038/nmeth.2805 [4] GALAS J C, TORRES J, BELOTTI M, et al. Microfluidic tunable dye laser with integrated mixer and ring resonator[J]. Applied Physics Letters, 2005, 86(26):264101. doi: 10.1063/1.1968421 [5] KOU Q, YESILYURT I, CHEN Y. Collinear dual-color laser emission from a microfluidic dye laser[J]. Applied Physics Letters, 2006, 88(9):091101. doi: 10.1063/1.2179609 [6] AUBRY G, KOU Q, SOTO-VELASCO J, et al. A multicolor microfluidic droplet dye laser with single mode emission[J]. Applied Physics Letters, 2011, 98(11):111111. doi: 10.1063/1.3565242 [7] KUEHNE A J, GATHER M C, EYDELNANT I A, et al. A switchable digital microfluidic droplet dye-laser[J]. Lab on A Chip, 2011, 11(21):3716-3719. doi: 10.1039/c1lc20405j [8] AZZOUZ H, ALKHAFADIJI L, BALSLEV S, et al. Levitated droplet dye laser[J]. Optics Express, 2006, 14(10):4374-4379. doi: 10.1364/OE.14.004374 [9] LACEY S, WHITE I M, SUN Y, et al. Versatile opto-fluidic ring resonator lasers with ultra-low threshold[J]. Optics Express, 2007, 15(23):15523-15530. doi: 10.1364/OE.15.015523 [10] WU X, SUN Y Z, SUTER J D, et al. Single mode coupled optofluidic ring resonator dye lasers[J]. Applied Physics Letters, 2009, 94(24):241109. doi: 10.1063/1.3156861 [11] CHANDRAHALIM H, CHEN Q, SAID A A, et al. Monolithic optofluidic ring resonator lasers created by femtosecond laser nanofabrication[J]. Lab on A Chip, 2015, 15(10):2335-2340. doi: 10.1039/C5LC00254K [12] LI Z Y, ZHANG Z Y, EMERY T, et al. Single mode optofluidic distributed feedback dye laser[J]. Optics Express, 2006, 14(2):696-701. doi: 10.1364/OPEX.14.000696 [13] GERSBORG-HANSEN M, KRISTENSEN A. Optofluidic third order distributed feedback dye laser[J]. Applied Physics Letters, 2006, 89(10):103518. doi: 10.1063/1.2345602 [14] SONG W H, VASDEKIS A E, LI Z Y, et al. Low-order distributed feedback optofluidic dye laser with reduced threshold[J]. Applied Physics Letters, 2009, 94(5):051117. doi: 10.1063/1.3079799 [15] ZHEN B, CHUA S L, LEE J, et al. Enabling enhanced emission and low-threshold lasing of organic molecules using special Fano resonances of macroscopic photonic crystals[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(34):13711-13716. doi: 10.1073/pnas.1311866110 [16] WANG W, ZHOU C, ZHANG T, et al. Optofluidic laser array based on stable high-Q Fabry-Perot microcavities[J]. Lab on A Chip, 2015, 15(19):3862-3869. doi: 10.1039/C5LC00847F [17] FORSTER T H. Transfer mechanisms of electronic excitation energy[J]. Radiation Research Supplement, 1960, 9(1):326-339. [18] WU P G, BRAND L. Resonace energy transfer:methods and applications[J]. Analytical Biochemistry, 1994, 218(1):1-13.