高级检索

输出波长可控的共孔径0.532μm/1.064μm/3.9μm激光器研究

郑奇, 孙军

郑奇, 孙军. 输出波长可控的共孔径0.532μm/1.064μm/3.9μm激光器研究[J]. 激光技术, 2017, 41(1): 10-13. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.003
引用本文: 郑奇, 孙军. 输出波长可控的共孔径0.532μm/1.064μm/3.9μm激光器研究[J]. 激光技术, 2017, 41(1): 10-13. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.003
ZHENG Qi, SUN Jun. Laser research of output wavelength controlled common aperture 0.532μm/1.064μm/3.9μm[J]. LASER TECHNOLOGY, 2017, 41(1): 10-13. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.003
Citation: ZHENG Qi, SUN Jun. Laser research of output wavelength controlled common aperture 0.532μm/1.064μm/3.9μm[J]. LASER TECHNOLOGY, 2017, 41(1): 10-13. DOI: 10.7510/jgjs.issn.1001-3806.2017.01.003

输出波长可控的共孔径0.532μm/1.064μm/3.9μm激光器研究

基金项目: 

国家自然科学基金资助项目 61575099

详细信息
    作者简介:

    郑奇(1975-), 男, 讲师, 硕士, 主要从事物理学与光电子技术应用的研究。E-mail:zhengqi789@126.com

  • 中图分类号: TN248.1

Laser research of output wavelength controlled common aperture 0.532μm/1.064μm/3.9μm

  • 摘要: 为了实现激光器同孔径下多种波长高功率高频率的可控输出,采用激光放大、高重频调Q、光参量振荡、倍频及扫描反射镜等方法,进行了理论分析和实验验证。取得了在电源电流为42A、调Q频率10kHz的共孔径下,选择性输出40W的0.532μm、100W的1.064μm和12.6W的3.9μm激光的实验数据。结果表明,该激光器实验装置可实现同孔径下多种波长高功率、高频率可控输出。
    Abstract: In order to achieve the laser of high power, high frequency and controllable output with the same aperture, using the method of laser amplifier, high frequency tuning Q, optical parametric oscillator(OPO), frequency doubling and scanning reflection mirror, theoretical analysis and experimental verification were carried out. Selective laser outputs 0.532μm of 40W, 1.064μm of 100W, 3.9μm of 12.6W were gotten under the condition of power supply current of 42A, Q frequency of 10kHz and the same aperture. The results show that the laser with high power, high frequency, controllable output and the same aperture can be achieved by this experimental device.
  • Figure  1.   Experimental light path diagram of fundamental frequency light

    Figure  2.   Principle diagram of laser frequency doubling

    Figure  3.   Principle diagram of OPO

    Figure  4.   General layout of experimental light path (Ⅰ—fundamental frequency light path diagram; Ⅱ—the output wavelength controllable common aperture laser output optical path; 1—total reflection mirror; 2—acousto-optic Q switch; 3, 7—pump chambers; 4, 9, 17—polarizer; 5—output mirror; 6—isolator; 8, 16—electro-optical crystal(LN); 10—focusing lens; 11—OPO total reflection mirror; 12—PPLT; 13—OPO output mirror; 14, 19—splitter mirror; 15, 21—dump; 18—KTP; 20, 22, 23—45°reflection mirror)

    Figure  5.   3.9μm laser output power

    Figure  6.   0.532μm laser image

    Figure  7.   0.532μm laser output power

  • [1]

    MAO X J, BI G J, ZHU X B, et al. A novel increase polarized laser output oscillator[J]. Laser & Infrared, 2007, 37(10):1044-1046(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGHW200710006.htm

    [2]

    DEGNAN J J. Theory of the optimally coupled Q-switched laser[J]. Journal of Quantum Electronics, 1989, 25(2):214-220. DOI: 10.1109/3.16265

    [3]

    ZOU Y, MAO X J, BI G J, et al. LD side-pumped 10kHz picosecond regenerative amplifier[J]. Laser & Infrared, 2012, 42(9):983-985(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGHW201209005.htm

    [4]

    WU Y, LONG X L, JIAO Zh X, et al. Optimal design of high power Nd:YAG laser based on compensation of thermal lens effect[J].Laser Technology, 2015, 39(3):377-380(in Chinese). http://www.opticsjournal.net/abstract.htm?id=OJ150428000155XtZw3z

    [5]

    NAKAI S, KANABE T, KAWASHIMA T, et al. Development of high average power DPSSL with high beam quality[J]. Proceedings of the SPIE, 2000, 4065:29-39. DOI: 10.1117/12.407358

    [6]

    YI J H, MOON H J, LEE J M. Diode-pumped 100W green Nd:YAG rod laser[J]. Applied Optics, 2004, 43(18):3732-3737. DOI: 10.1364/AO.43.003732

    [7]

    XIE Y Zh, WAN Y, DENG H R, et al. Study on mid-infrared laser PPMgLN optical parametric oscillators[J]. Laser Technology, 2014, 38(3):368-371(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGJS201403018.htm

    [8]

    BI G J, ZHONG G Sh, MAO X J, et al. Research on double electro-optic Q-switch high repetition laser[J]. Laser & Infrared, 2012, 42(5):510-512(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTotal-JGHW201205008.htm

    [9]

    CHO K H, RHEE B K. Intracavity infrared OPO using periodically poled Mg-doped stoichiometric LiTaO3 for generating high average power[J]. Proceedings of the SPIE, 2008, 6875:68751A. DOI: 10.1117/12.761494

    [10]

    YAN B X, BI Y, ZHOU M, et al. Highly efficient continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on MgO:PPLN[J]. Chinese Physical Letters, 2010, 27(12):124203. DOI: 10.1088/0256-307X/27/12/124203

    [11]

    YIN X H, HOU L Q, DONG Y. Development of pumping configurations for high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2006(5):30-34(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGDJ200605006.htm

    [12]

    PENG X Y, XU L, ANAND A. Highly efficient high-repetition-rate tunable all-solid-state optical parametric oscillator[J]. IEEE Journal of Quantum Electronics, 2005, 41(1):53-61. DOI: 10.1109/JQE.2004.837952

    [13]

    KONNO S, KOJIMA T, FUJIKAWA S, et al. High-brightness 138W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser[J]. Optics Letters, 2000, 25(2):105-107. http://www.opticsinfobase.org/abstract.cfm?uri=ol-25-2-105

    [14]

    SONG Zh, LIU L R, ZHOU Y, et al. Effect of the polarization direction of incident light on electro-optic modulator for light propagation near the optical axis in LN[J].Chinese Journal of Lasers, 2005, 32(3):319-322(in Chinese). http://cn.bing.com/academic/profile?id=a737fd85fbe7688f449f0ec123aa5493&encoded=0&v=paper_preview&mkt=zh-cn

图(7)
计量
  • 文章访问数:  7
  • HTML全文浏览量:  1
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-14
  • 修回日期:  2016-01-12
  • 发布日期:  2017-01-24

目录

    /

    返回文章
    返回