-
本方案中选用基频1.06μm激光抽运非线性周期极化钽酸锂(periodically poled LiTaO3,PPLT)晶体OPO技术来产生3.9μm激光。OPO中的波长转换需要同时满足能量和动量守恒(相位匹配)方程[7],守恒方程如下:
$\frac{1}{{{\mathit{\lambda }_{\rm{p}}}}} = \frac{1}{{{\mathit{\lambda }_{\rm{i}}}}} + \frac{1}{{{\mathit{\lambda }_{\rm{s}}}}} $
(1) $\begin{array}{l} \frac{{{n_{\rm{p}}}\left( {{\mathit{\lambda }_{\rm{p}}},T} \right)}}{{{\mathit{\lambda }_{\rm{p}}}}} - \frac{{{n_{\rm{i}}}\left( {{\mathit{\lambda }_{\rm{i}}},T} \right)}}{{{\mathit{\lambda }_{\rm{i}}}}} - \\ \frac{{{n_{\rm{s}}}\left( {{\mathit{\lambda }_{\rm{s}}},T} \right)}}{{{\mathit{\lambda }_{\rm{s}}}}} - \frac{1}{{\mathit{\Lambda }\left( T \right)}} = 0 \end{array} $
(2) 式中,λp为抽运光波长;λi为闲频光波长;λs为信号光波长;T为晶体温度;np(λp, T)为抽运光在温度T时的折射率;ni(λi, T)为闲频光在温度T时的折射率;ns(λs, T)为信号光在温度T时的折射率;Λ(T)为非线性晶体的极化周期。
当晶体温度控温在25℃、抽运光为1.06μm、信号光为1.46μm时,输出3.9μm激光,由上式计算出PPLT晶体的极化周期Λ=29.2μm。原理光路如图 3所示。
输出波长可控的共孔径0.532μm/1.064μm/3.9μm激光器研究
Laser research of output wavelength controlled common aperture 0.532μm/1.064μm/3.9μm
-
摘要: 为了实现激光器同孔径下多种波长高功率高频率的可控输出,采用激光放大、高重频调Q、光参量振荡、倍频及扫描反射镜等方法,进行了理论分析和实验验证。取得了在电源电流为42A、调Q频率10kHz的共孔径下,选择性输出40W的0.532μm、100W的1.064μm和12.6W的3.9μm激光的实验数据。结果表明,该激光器实验装置可实现同孔径下多种波长高功率、高频率可控输出。Abstract: In order to achieve the laser of high power, high frequency and controllable output with the same aperture, using the method of laser amplifier, high frequency tuning Q, optical parametric oscillator(OPO), frequency doubling and scanning reflection mirror, theoretical analysis and experimental verification were carried out. Selective laser outputs 0.532μm of 40W, 1.064μm of 100W, 3.9μm of 12.6W were gotten under the condition of power supply current of 42A, Q frequency of 10kHz and the same aperture. The results show that the laser with high power, high frequency, controllable output and the same aperture can be achieved by this experimental device.
-
Figure 4. General layout of experimental light path (Ⅰ—fundamental frequency light path diagram; Ⅱ—the output wavelength controllable common aperture laser output optical path; 1—total reflection mirror; 2—acousto-optic Q switch; 3, 7—pump chambers; 4, 9, 17—polarizer; 5—output mirror; 6—isolator; 8, 16—electro-optical crystal(LN); 10—focusing lens; 11—OPO total reflection mirror; 12—PPLT; 13—OPO output mirror; 14, 19—splitter mirror; 15, 21—dump; 18—KTP; 20, 22, 23—45°reflection mirror)
-
[1] MAO X J, BI G J, ZHU X B, et al. A novel increase polarized laser output oscillator[J]. Laser & Infrared, 2007, 37(10):1044-1046(in Chinese). [2] DEGNAN J J. Theory of the optimally coupled Q-switched laser[J]. Journal of Quantum Electronics, 1989, 25(2):214-220. doi: 10.1109/3.16265 [3] ZOU Y, MAO X J, BI G J, et al. LD side-pumped 10kHz picosecond regenerative amplifier[J]. Laser & Infrared, 2012, 42(9):983-985(in Chinese). [4] WU Y, LONG X L, JIAO Zh X, et al. Optimal design of high power Nd:YAG laser based on compensation of thermal lens effect[J].Laser Technology, 2015, 39(3):377-380(in Chinese). [5] NAKAI S, KANABE T, KAWASHIMA T, et al. Development of high average power DPSSL with high beam quality[J]. Proceedings of the SPIE, 2000, 4065:29-39. doi: 10.1117/12.407358 [6] YI J H, MOON H J, LEE J M. Diode-pumped 100W green Nd:YAG rod laser[J]. Applied Optics, 2004, 43(18):3732-3737. doi: 10.1364/AO.43.003732 [7] XIE Y Zh, WAN Y, DENG H R, et al. Study on mid-infrared laser PPMgLN optical parametric oscillators[J]. Laser Technology, 2014, 38(3):368-371(in Chinese). [8] BI G J, ZHONG G Sh, MAO X J, et al. Research on double electro-optic Q-switch high repetition laser[J]. Laser & Infrared, 2012, 42(5):510-512(in Chinese). [9] CHO K H, RHEE B K. Intracavity infrared OPO using periodically poled Mg-doped stoichiometric LiTaO3 for generating high average power[J]. Proceedings of the SPIE, 2008, 6875:68751A. doi: 10.1117/12.761494 [10] YAN B X, BI Y, ZHOU M, et al. Highly efficient continuous-wave mid-infrared intracavity singly resonant optical parametric oscillator based on MgO:PPLN[J]. Chinese Physical Letters, 2010, 27(12):124203. doi: 10.1088/0256-307X/27/12/124203 [11] YIN X H, HOU L Q, DONG Y. Development of pumping configurations for high average power solid-state lasers[J]. Laser & Optoelectronics Progress, 2006(5):30-34(in Chinese). [12] PENG X Y, XU L, ANAND A. Highly efficient high-repetition-rate tunable all-solid-state optical parametric oscillator[J]. IEEE Journal of Quantum Electronics, 2005, 41(1):53-61. doi: 10.1109/JQE.2004.837952 [13] KONNO S, KOJIMA T, FUJIKAWA S, et al. High-brightness 138W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser[J]. Optics Letters, 2000, 25(2):105-107. [14] SONG Zh, LIU L R, ZHOU Y, et al. Effect of the polarization direction of incident light on electro-optic modulator for light propagation near the optical axis in LN[J].Chinese Journal of Lasers, 2005, 32(3):319-322(in Chinese).