高级检索

基于光谱重建技术的壁画颜色复原与评价

王可, 王慧琴, 殷颖, 毛力, 张毅

王可, 王慧琴, 殷颖, 毛力, 张毅. 基于光谱重建技术的壁画颜色复原与评价[J]. 激光技术, 2019, 43(2): 280-285. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.024
引用本文: 王可, 王慧琴, 殷颖, 毛力, 张毅. 基于光谱重建技术的壁画颜色复原与评价[J]. 激光技术, 2019, 43(2): 280-285. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.024
WANG Ke, WANG Huiqin, YIN Ying, MAO Li, ZHANG Yi. Reproduction and evaluation of mural color based on spectral reconstruction technology[J]. LASER TECHNOLOGY, 2019, 43(2): 280-285. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.024
Citation: WANG Ke, WANG Huiqin, YIN Ying, MAO Li, ZHANG Yi. Reproduction and evaluation of mural color based on spectral reconstruction technology[J]. LASER TECHNOLOGY, 2019, 43(2): 280-285. DOI: 10.7510/jgjs.issn.1001-3806.2019.02.024

基于光谱重建技术的壁画颜色复原与评价

基金项目: 

西安建筑科技大学基金资助项目 JC1514

西安建筑科技大学基金资助项目 QN1628

陕西省科技厅重点研发计划资助项目 2017KW-036

国家自然科学基金青年基金资助项目 61701388

西安市碑林区科技计划资助项目 GX1606

西安市科技计划资助项目 2016043SF/RK06(3)

住房和城乡建设部科学技术计划资助项目 2017-K2-014

陕西省教育厅科研计划资助项目 17JK0431

详细信息
    作者简介:

    王可(1981-), 男, 博士, 讲师, 现主要从事光谱图像处理的研究。E-mail:wangke@xauat.edu.cn

  • 中图分类号: O433.4

Reproduction and evaluation of mural color based on spectral reconstruction technology

  • 摘要: 为了在给定的照明和观察条件下,用相机响应信号重建物体表面光谱反射率,实现颜色的高精度复原,采用了多光谱成像技术采集物体表面的多光谱图像,使用主成分分析、 R 矩阵和正则化 R 矩阵方法进行了光谱反射率重建的理论研究,并对壁画色块颜色复原进行了实验验证,取得了壁画色块的重建光谱和颜色复原数据,同时对基于正则化 R 矩阵方法的壁画色块颜色复原结果进行了评价。结果表明,正则化 R 矩阵方法进行光谱重建的光谱精度和色度精度更高,与主成分分析和 R 矩阵方法相比,色差降低了0.0732,适应度系数提高了1.10%,均方根误差降低了0.0035,光谱匹配偏指数降低了0.0225。该方法能够满足高精度颜色再现的需要,适用于文物艺术品数字化存档、文物艺术品修复等领域。
    Abstract: Under given illumination and observation conditions, in order to reconstruct the spectral reflectance of the object surface from the camera response signal to achieve high-precision color reproduction, multi-spectral imaging technology was used to acquire multi-spectral image response of an object.The principal component analysis, matrix R and the new regularization matrix R method were used to analyze the theoretical analysis of spectral reflectance reconstruction.The results of the research were verified experimentally in the color reproduction of mural color blocks.The reconstructed spectral reflectance and color reproduction data of mural color blocks were obtained.At the same time, the color reproduction results of mural color blocks based on regularization matrix R method were evaluated.The results show that the regularization matrix R method is superior to the principal component analysis and matrix R method in the spectral accuracy and reconstructed accuracy.Compared with the principal component analysis and the matrix R method, the color difference is reduced by 0.0732, the fitness coefficient is increased by 1.10%, the root mean square error is reduced by 0.0035, and the spectral matching partial index is reduced by 0.0225.This method can meet the needs of high-precision color reproduction, which is suitable for digital archiving of cultural relic artwork, restoration of cultural relics and other fields.
  • Figure  1.   Flow chart of color reproduction based on spectra

    Figure  2.   a—mural referential patches b—mural's multi-spectra images

    Figure  3.   The reconstructed spectral reflectance of mural referential patches

    Figure  4.   CIE LAB colorimetric spatial distribution of mural referential patches by three reconstruction methods

    Figure  5.   The original and reproduced mural images rendered by different light sources

    a—the original mural rendered by D65 light source b—the original mural rendered by A light source c—the reproduced mural rendered by D65 light source d—the reproduced mural rendered by A light source

    Table  1   ΔE, RMSE, GFC, ISSD of mural referential patches by three reconstruction methodsc

    method target 1 2 3 4 5 6 mean
    RMR ΔE 1.2415 0.9127 2.2456 1.8367 4.7675 1.5689 2.0955
    GFC/% 99.73 99.32 99.25 99.54 99.16 99.85 99.47
    ISSD 0.1168 0.0102 0.1605 0.1387 0.3101 0.1609 0.1492
    RMSE 0.0133 0.0122 0.0327 0.0204 0.0384 0.0127 0.0214
    MR ΔE 1.3045 0.9218 2.3003 1.8836 4.9995 1.6024 2.1687
    GFC/% 99.60 99.28 99.21 99.45 99.01 99.80 99.39
    ISSD 0.1211 0.0154 0.1835 0.2019 0.3301 0.1783 0.1717
    RMSE 0.0147 0.0166 0.0354 0.0245 0.0401 0.0179 0.0249
    PCA ΔE 1.3357 0.9276 2.5976 1.9081 5.0874 1.6701 2.2544
    GFC/% 99.53 99.25 99.17 99.31 98.92 99.75 99.32
    ISSD 0.1234 0.0178 0.2096 0.2297 0.3299 0.1721 0.1754
    RMSE 0.0155 0.0188 0.0357 0.0249 0.0472 0.0187 0.0268
    下载: 导出CSV

    Table  2   Test results of subjective evaluation

    light source D65 light source A light source
    score 0.8927 0.8702
    下载: 导出CSV

    Table  3   Score description of subjective evaluation

    score effect
    0.9001~1.0000 perfect
    0.8001~0.9000 very good
    0.7001~0.8000 good
    0.6001~0.7000 general
    0.5001~0.6000 poor
    0.1001~0.5000 very poor
    下载: 导出CSV
  • [1]

    ZOU J P, YANG J, LI H N, et al. Study of spectral reflectance reconstruction based on matrix R method[J]. Acta Optica Sinica, 2014, 34(s2):s233001(in Chinese).

    [2]

    ZHENG C Y, GUO Zh H, JING L. Measurement of total viable count on chilled mutton surface based on hyperspectral imaging technique[J]. Laser Technology, 2015, 39(2):284-288(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/spgykj201420016

    [3]

    LI Y M, CHEN H J, LIU Ch J. Talking about the development of spectral color reproduction of printed manuscripts[J]. China Print, 2017, 298(10):75-78(in Chinese).

    [4]

    FAN L N, ZHOU Sh Sh. Online detection and evaluation of print co-lor reproduction quality based on iCAM[J]. Packaging Engineering, 2018, 39(1):196-201(in Chinese).

    [5]

    HE S H, GAO Y, CHEN Q, et al. The set up of primary liner mixed space in spectral color reproduction[J]. Acta Optica Sinica, 2016, 36(3):0333001(in Chinese). DOI: 10.3788/AOS

    [6]

    XIAO W, CHEN J Zh, YANG G G. Color printing and printing spectrum color separation method for metachromatic spectrum anti-counterfeiting: China, 104316469 A[P]. 2015-01-28(in Chinese).

    [7]

    WU Q, WANG H, SHI Y L. Color reproduction quantitative analysis of color reflection holography[J]. Chinese Journal of Lasers, 2016, 43(11):1109001(in Chinese). DOI: 10.3788/CJL

    [8]

    HUANG H L, YI W N, DU L L, et al. Multi-spectral remote sensing image true color synthesis technique based on artificial target[J]. Infrared and Laser Engineering, 2016, 45(11):347-352(in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hwyjggc201611056

    [9]

    ZENG Y, ZENG Y A, ZHANG N Y Sh, et al. A novel method to improve spectral detection capability of imaging spectrometers[J]. Laser Technology, 2018, 42(2):196-200(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201802011

    [10]

    LONG Y Q, WANG H Q, WANG K, et al. Study on spectral reconstruction method based on optimized selected samples[J]. Imaging Science and Photochemistry, 2017, 35(1):88-96(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ggkxyghx201701010

    [11]

    HE S H, LIU Zh, CHEN Q. Research of spectral dimension reduction method based on matrix R theory[J]. Acta Optica Sinica, 2014, 34(2):0233001(in Chinese). DOI: 10.3788/AOS

    [12]

    WANG J J, LIAO N F, WU W M, et al. Spectral reflectance reconstruction with nonlinear composite model of the metameric black[J]. Spectroscopy and Spectral Analysis, 2017, 37(3):704-709(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201703007

    [13]

    OU J X, LIU W Ch. Fitting of sphere point clouds by weighted total least squares based on IGGⅢ scheme[J]. Laser Technology, 2017, 41(5):749-753(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705026

    [14]

    WANG K, WANG H Q, LONG Y Q, et al. Spectral reflectance reconstruction based on dimension reduction regularization polynomials[J]. Laser & Optoelectronics Progress, 2018, 55(5):053004(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201805056

    [15]

    ONETO L, RIDELLA S, ANGUITA D. Tikhonov, Ivanov and Morozov regularization for support vector machine learning[J]. Machine Learning, 2016, 103(1):103-136. DOI: 10.1007/s10994-015-5540-x

    [16]

    ZHENG H Y, HU F R. Design of narrowband guided-mode resonance filters in visible wavelength region[J]. Laser Technology, 2016, 40(1):118-121(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201601027

    [17]

    LI F. Characteristics, mechanism and cleaning of mycosis diseases in ancient architecture murals[J]. Identification and Appreciation to Cultural Relics, 2016, 96(11):110-111(in Chinese).

    [18]

    ZHANG F Zh, XU H S, FENG H. Spectral matching method for improving metamerism quality of LED daylight simulator[J]. China Illuminating Engineering Journal, 2017, 28(2):23-27(in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zmgcxb201702006

    [19]

    HUANG M, SHI Ch J, LI Z Y. Influences on observers color discrimination with normal color vision[J]. Acta Optica Sinica, 2016, 36(9):0933001(in Chinese). DOI: 10.3788/AOS

    [20]

    HUANG M, CUI G H, LIU Y. Analysis of observers metamerism differences for different retinal cone visual responses[J]. Spectroscopy and Spectral Analysis, 2015, 35(10):2802-2809(in Chin-ese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201510035

图(5)  /  表(3)
计量
  • 文章访问数:  6
  • HTML全文浏览量:  2
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-19
  • 修回日期:  2018-06-15
  • 发布日期:  2019-03-24

目录

    /

    返回文章
    返回