-
球面晶体基于X射线布喇格衍射条件,只有满足以下条件X射线才会被反射:
$ n\lambda = 2d\sin \theta $
(1) 式中,n是衍射级次,λ是X射线波长,d是晶格间距,θ是布喇格角。
球面晶体成像原理如图 1所示。点光源发出的X射线满足布喇格衍射条件被球面晶体反射后,形成了两个焦点:分别是距离球面晶体qm的子午面焦点Fm和距离球面晶体qs的弧矢面焦点Fs,球面晶体子午和弧矢方向的弯曲半径分别为Rm和Rs,则:
$ {q_{\rm{m}}} = \frac{{p{R_{\rm{m}}}\sin \theta }}{{2p - {R_{\rm{m}}}\sin \theta }} $
(2) $ {q_{\rm{s}}} = \frac{{p{R_{\rm{s}}}}}{{2p\sin \theta - {R_{\rm{s}}}}} $
(3) 式中, 光源到球面晶体的距离为p。子午面和弧矢面上成像系统分别满足[11]:
$ \frac{1}{p} + \frac{1}{{{q_{\rm{m}}}}} = \frac{2}{{{R_{\rm{m}}}\sin \theta }} $
(4) $ \frac{1}{p} + \frac{1}{{{q_{\rm{s}}}}} = \frac{{2\sin \theta }}{{{R_{\rm{s}}}}} $
(5) 式中,Rm是球面晶体的弯曲半径。
在距离子午面焦点Fm为d′的位置,可以得到最佳成像(子午面和弧矢面的放大率相同)。距离d′为[12]:
$ d' = \frac{{{q_{\rm{s}}}{q_{\rm{m}}} - q_{\rm{m}}^2}}{{{q_{\rm{s}}} - {q_{\rm{m}}}}} $
(6) 子午面和弧矢面上的放大率为[13]:
$ {M_{\rm{m}}} = \frac{p}{{{q_{\rm{m}}}}}\frac{{d'}}{{p - a}} $
(7) $ {M_{\rm{s}}} = \frac{p}{{{q_{\rm{s}}}}}\frac{{{q_{\rm{s}}} - \left( {{q_{\rm{m}}} + d'} \right)}}{{p - a}} $
(8) 式中,a为成像物体到球面晶体的距离。
最佳成像位置d′与子午面和弧矢面的焦距相关,
与成像系统中成像物体的放置无关。而系统的放大率与d′和成像物体位置有关。如果成像系统结构确定后,最佳成像位置d′就确定,只能通过移动成像物体,来调节系统的放大率。
-
基于球面晶体成像特性,设计了球面晶体背光成像系统并应用于等离子体的成像诊断实验。在实际成像实验中,背光源放置于靶腔中央位置,背光成像系统可以按照成像光路放置球面晶体,但探测器的位置无法达到理论位置。背光源也不是理论上的点光源,而是存在一定的尺度。这些参量的变化都会影响到最后的成像,为了验证球面晶体成像系统的性能,利用模拟软件SHADOW对影响成像的参量进行了模拟研究。
-
对于球面晶体背光成像系统,理论上探测器应该放置在最佳成像位置处。实际上由于实验环境等限制,探测器位置会偏离理论位置Δd′,存在几何焦深,产生调焦误差[14-15]。为了验证成像系统探测器位置的变化对最后成像结果的影响,分析探测器位置的改变对系统放大率M的影响。利用模拟软件SHADOW分析探测器位置变化量Δd′对相对放大率(ΔM/M)的影响。为了便于模拟,假设成像系统中参量a,p,R和θ都是定值,探测器位置的变化量Δd′与放大率M变化量ΔM的关系为:
$ \Delta M = {\left( {\frac{{\partial M}}{{\partial b}}} \right)_{a,p,R,\theta }}\Delta d' $
(9) 根据子午面的放大率公式(7)式,得到子午面放大率变化量ΔM为:
$ \Delta M = \frac{{\Delta d'}}{{p - a}} $
(10) 子午面放大率相对变化(ΔM/M)a, p, R, θ为:
$ {\left( {\frac{{\Delta M}}{M}} \right)_{a,p,R,\theta }} = \frac{{\Delta d'}}{{p - a}}\frac{{p - a}}{{d'}} = \frac{{\Delta d'}}{{d'}} $
(11) 同样,弧矢面放大率相对变化(ΔM/M)a, p, R, θ为:
$ \begin{array}{*{20}{c}} {{{\left( {\frac{{\Delta M}}{M}} \right)}_{a,p,R,\theta }} = \frac{{ - \Delta d'}}{{p - a}}\frac{{p - a}}{{{q_{\rm{s}}} - {q_{\rm{m}}} - d'}} = }\\ { - \frac{{\Delta d'}}{{{q_{\rm{s}}} - {q_{\rm{m}}} - d'}}} \end{array} $
(12) 表 1是探测器位置变化量Δd′与放大率相对变化(ΔM/M)a, p, R, θ模拟和计算结果。模拟两个背光成像系统,一个是球面晶体弯曲半径200mm,布喇格角为57°,放大率为2;另一个是球面晶体弯曲半径200mm,布喇格角为65°,放大率为1.5;探测器位置变化量Δd′=±3mm。模拟结果表明,两成像系统子午面上得到的放大率相对变化(ΔM/M)a, p, R, θ分别为±4%和±7.6%;弧矢面上相对变化分别为±1.5%和±4.7%。而通过(11)式和(12)式得到两个成像系统子午面的(ΔM/M)a, p, R, θ分别为±4.2%和±7.6%;弧矢面相对放大率分别为±1.7%和±4.9%。由模拟结果与公式计算结果可知,探测器位置变化很大,但子午面和弧矢面上放大率变化却很小。
Table 1. Results between magnification rate and ΔM/M
parameters of imaging system M ΔM/M simulation results calculation Bragg angle/
(°)R/
mmp/
mmΔd′/
mmmeridian plane sagittal plane meridian plane sagittal plane meridian plane sagittal plane 57 200 167.7 0 2 2 -3 1.92 2.03 -4% 1.5% -4.2% 1.7% 3 2.08 1.97 4% -1.5% 4.2% -1.7% 65 200 181.3 0 1.5 1.5 -3 1.39 1.57 -7.3% 4.7% -7.6% 4.9% 3 1.61 1.43 7.3% -4.7% 7.6% -4.9% -
球面晶体背光成像系统理论上光源近似为点光源,但是在实际实验中,光源尺寸不可能为点光源,如箍缩负载丝阵尺寸为几百个微米。当使用一个真正的光源(有尺寸的光源),对成像系统的空间分辨率产生影响。为了分析成像系统中光源尺寸对空间分辨率的影响,利用模拟软件SHADOW来模拟不同光源尺寸的背光成像系统。文中分别模拟了两个不同的背光成像系统,背光源光源直径分别为15μm,20μm和30μm。
图 2是布喇格角为57°、球面晶体弯曲半径为100mm的成像系统分别在3种不同光源尺寸的情况下,成像面上分别得到的相应背光网格成像。
表 2是在不同尺寸的背光源,两个背光成像系统得到的子午面和弧矢面空间分辨率的结果。两个成像系统中球面晶体弯曲半径分别为100mm和200mm,布喇格角分别为57°和65°,两成像系统的放大率都为M=1.5。子午面得到的空间分辨率都小于15μm。模拟结果表明:不同的背光成像系统,空间分辨率与光源尺寸的大小有重要的关系,光源尺寸越小,子午面和弧矢面的空间分辨率越高。使用点光源得到的背光成像的空间分辨率要高于有尺寸大小的光源。对于所有的背光成像,得到的成像空间分辨率都是小于光源的尺寸。
Table 2. Spatial resolution of two backlighting system
imaging system the size of source/μm spatial resolution meridian plane/μm sagittal plane/μm θ=57°,R=100mm
p=84mm,a=60.4mm15 8 14.5 20 9.5 19 30 11 28.6 θ=65°,R=200mm
p=181.3mm,a=155mm15 10 14.9 20 13 19.5 30 15 29
基于球面晶体背光成像系统的性能模拟研究
Performance simulation of backlight imaging system based on spherical crystal
-
摘要: 为了实现球面晶体背光成像、验证球面晶体背光成像系统性能,采用模拟软件SHADOW对该背光成像系统进行了模拟研究,并对实际成像过程中影响系统成像的探测器位置、背光源的大小等参量进行了模拟分析。结果表明,探测器位置的微小变化对成像系统的相对放大率影响较小;背光源越小,成像系统的空间分辨率越高。该成像系统具有很好的空间分辨率,系统性能稳定可靠。Abstract: In order to realize the work of X-ray imaging system and testify the performance of the imaging system, the backlighting imaging system was studied by ray tracing simulation software SHADOW. By the simulation of system parameters(detection position, the size of backlighting source), the results show that the position of detection has a little influence on the relative magnification of the system. The spatial resolution of the X-ray imaging system is higher with the decrease of the size of backlighting source. The imaging system based on spherically bent crystal has high spatial resolution and better performance.
-
Key words:
- X-ray optics /
- spherical crystal /
- X-ray imaging /
- relative magnification /
- spatial resolution
-
Table 1. Results between magnification rate and ΔM/M
parameters of imaging system M ΔM/M simulation results calculation Bragg angle/
(°)R/
mmp/
mmΔd′/
mmmeridian plane sagittal plane meridian plane sagittal plane meridian plane sagittal plane 57 200 167.7 0 2 2 -3 1.92 2.03 -4% 1.5% -4.2% 1.7% 3 2.08 1.97 4% -1.5% 4.2% -1.7% 65 200 181.3 0 1.5 1.5 -3 1.39 1.57 -7.3% 4.7% -7.6% 4.9% 3 1.61 1.43 7.3% -4.7% 7.6% -4.9% Table 2. Spatial resolution of two backlighting system
imaging system the size of source/μm spatial resolution meridian plane/μm sagittal plane/μm θ=57°,R=100mm
p=84mm,a=60.4mm15 8 14.5 20 9.5 19 30 11 28.6 θ=65°,R=200mm
p=181.3mm,a=155mm15 10 14.9 20 13 19.5 30 15 29 -
[1] GLENZER S H, MAcGOWAN B J, MEEZAN N B, et al. Demonstration of ignition radiation temperatures in indirect-drive inertial confinement fusion hohlraums[J]. Physical Review Letters, 2011, 106(8):085004. doi: 10.1103/PhysRevLett.106.085004 [2] SINARS D B, BENNETT G R, WENGER D F, et al. Monochromatic X-ray imaging experiments on the Sandia National Laboratories Z facility (invited)[J]. Review of Scientific Instruments, 2004, 75(10):3672-3677. doi: 10.1063/1.1779607 [3] SINARS D B, BENNETT G R, WENGER D F, et al. Evaluation of bent-crystal X-ray backlighting and microscopy techniques for the Sandia Z machine[J]. Applied Optics, 2003, 42(19):4059-4071. doi: 10.1364/AO.42.004059 [4] FUJIOKA S, FUJIWARA T, TANABE M, et al. Monochromatic X-ray radiography for areal-density measurement of inertial fusion energy fuel in fast ignition experiment[J]. Review of Scientific Instruments, 2010, 81(10):10E529. doi: 10.1063/1.3494383 [5] AGLITSKIY Y, KARASIK M, VELIKOVICH A L, et al.Classical and ablative Richtmyer-Meshkov instability and other ICF relevant plasma flows diagnosed with monochromatic X-ray imaging[J].Physica Scripta, 2008, 132(19):2517-2530. [6] BITTER M, HILL K W, STRATTON B, et al. Spatially resolved spectra from a new X-ray imaging crystal spectrometer for measurements of ion and electron temperature profiles (invited)[J]. Review of Scientific Instruments, 2004, 75(10):3660-3665. doi: 10.1063/1.1791747 [7] KOCH J A, AGLITSKIY Y, BROWN C, et al. 4.5 and 8keV emission and absorption X-ray imaging using spherically bent quartz 203 and 211 crystal[J]. Review of Scientific Instruments, 2003, 74(3):2130-2135. doi: 10.1063/1.1537448 [8] BENNETT G R, SINARS D B, WENGER D F, et al. High-brightness, high-spatial-resolution, 6.151keV X-ray imaging of inertial confinement fusion capsule implosion and complex hydrodynamics experiments on Sandia's Z accelerator(invited)[J]. Review of Scientific Instruments, 2006, 77(10):10E322. doi: 10.1063/1.2336433 [9] LIU L F, XIAO S L, QIAN J Y, et al. X-ray backlight imaging in Z-pinch[J]. Nuclear Instruments and Methods in Physics Research Section, 2012, A684(11):93-96. [10] KOCH J A, LANDEN O L, BARBEE T W, et al. High-energy X-ray microscopy techniques for laser-fusion plasma research at the national ignition facility[J].Applied Optics, 1998, 37(10):1784-1795. doi: 10.1364/AO.37.001784 [11] KOCH J A, LANDEN O L, HAMMEL B A, et al. Recent progress in high-energy, high-resolution X-ray imaging techniques for application to the National Ignition Facility[J]. Review of Scientific Instruments, 1999, 70(1):525-530. doi: 10.1063/1.1149271 [12] SANCHEZ del Rio M, ALIANELLI L, PIKUZ T A, et al. Anovel imaging X-ray mocroscope based on a spherical crystal[J]. Review of Scientific Instruments, 2001, 72(8):3291-3303. doi: 10.1063/1.1379599 [13] BENNETT G R, SMITH I C, SHORES J E, et al. 2~20ns interframe time 2-frame 6.151keV X-ray imaging on the recently upgraded Z accelerator:A progress report[J]. Review of Scientific Instruments, 2008, 79(10):10E914. doi: 10.1063/1.2956823 [14] LIPSON A, LIPSON S G, LIPSON H. Optical physics[M].4th ed.Cambridge, UK:Cambridge University Press, 2010:325-330. [15] MCLEAN I S. Electronic imaging in astronomy:detectors and instrumentation[M]. Chichester, UK:Praxis Publishing Ltd., 2008:52-60.