Finite element analysis of CFRP and stainless steel laser welding
-
摘要: 为了研究碳纤维增强热塑性复合材料(CFRP)与不锈钢激光焊接的机理,及不同工艺参量对焊缝质量的影响规律,采用ANSYS建立了基于热传导焊的3维有限元模型,计算得到了温度场和应力场的分布,分析了激光功率、焊接速率和光斑直径等参量对焊缝宽度和焊接深度的影响规律,并进一步计算分析了焊接后的残余应力对焊接质量的影响情况。结果表明,该有限元模型能够快速、有效模拟激光对CFRP-不锈钢焊接温度场和残余应力分布;激光功率、焊接速率和光斑直径等工艺参量对焊缝宽度和焊接深度有着重要的影响;计算出的焊接残余应力与残余应力的理论分布规律也基本吻合,验证了该有限元模型的可靠性。该研究结果对获得高质量CFRP-不锈钢焊接接头是有帮助的。Abstract: In order to investigate the mechanism of laser welding of carbon fiber reinforced plastics(CFRP)and stainless steel, and find out the effect of different process parameters on welding quality, a 3-D finite element model based on heat conduction welding was built by ANSYS. The distributions of temperature field and stress field were calculated by ANSYS. The effect of process parameters, including laser power, scanning welding and spot diameter, on welding width and welding depth was investigated. And the influence of welding residual stress on the quality of welding was also investigated. The results show that temperature field and residual stress distributions can be rapidly and effectively simulated by the proposed finite element model. Welding width and depth are affected by laser power, scanning welding and spot diameter. The calculated distribution and the theoretical distribution of residual stress agree well. The result confirms that the model is reliable. The result is helpful to obtain high quality welded joints of CFRP-stainless steel.
-
-
[1] YIN X Y, ZHU B, LIU H Zh, et al. Advance of the research in carbon fiber reinforced thermoplastic resin matrix composite[J]. Hi-Tech Fiber Application, 2011, 12(6):42-44(in Chinese).
[2] TAN X H, SHAN J G, REN J L. Effects of Cr planting layer on shear strength and interface bonding characteristics of mind steel/CFRP joint by laser heating[J]. Acta Metallurgica, 2013, 49(6):751-756(in Chinese).
[3] WANG X G, YU Y, LI Sh M, et al. The research on fiber reinforced thermoplastic composite[J]. Fiber Composites, 2011, 6(2):44-47(in Chinese).
[4] XING A. Laser transmission welding of thermoplastic polyurethane films[D]. Zhenjiang:Jiangsu University, 2009:42-57(in Chinese).
[5] WU Y W, LIU H X, LI P, et al. Experimental study of laser transmission welding between polycarbonate and polyphenylene oxide[J]. Chinese Journal of Lasers, 2015, 42(5):1801-1807(in Chinese).
[6] GONG F, HU X Y, TAN Y, et al. Semiconductor laser transmission welding of thermoplastic polypropylene[J]. Transactions of the China Welding Institution, 2013, 34(4):109-112(in Chinese).
[7] JIAO J K, JIANG H R, ZHANG W W. Study on thremal plastics laser transimisson welding[J]. Electromachining Mould, 2013(6):55-58(in Chinese).
[8] JIAO J K, BAI X B, WANG X B. Finite element analysis of PMMA laser transmission welding[J]. Laser Technology, 2011,35(4):453-456(in Chinese).
[9] CHEN Y J, GUO Zh N, LIAN H Sh. Finite element simulation and experimental study about laser micro-joining between biopolymer and metal[J]. Laser Technology, 2013, 37(6):760-765(in Chinese).
[10] JUNG K W, KAWAHITO Y, TAKAHASHI M, et al. Laser direct joining of carbon fiber reinforced plastic to zinc-coated steel[J]. Materials and Design, 2013, 47(9):179-188.
[11] JUNG K W, KAWAHITO Y, KATAYAMA S. Laser direct joining of carbon fibre reinforced plastic to stainless steel[J]. Science Technology of Weld Joint, 2011, 16(8):676-680.
[12] LIU X X,HUANG R,YAO G. Numerical simulation of the temperature field of laser butt welding of titanium alloy sheet[J]. Laser Technology, 2013,37(5):700-704(in Chinese).
[13] LIU H X, XING A, ZHANG H Zh, et al. Temperature field simulation on laser transmission welding of polyvinylchloride[J].Chinese Journal of Lasers, 2008, 35(11):1801-1807(in Chinese).
[14] WANG X, LI P, LIU H X, et al. Temperature field simulation on laser transmission joining of PET films and titanium[J]. Chinese Journal of Lasers, 2010, 37(5):1391-1397(in Chinese).
[15] DENG D, MURAKAWA H. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements[J]. Computational Materials Science, 2006,37(3):269-277.
[16] WU Q, XU L Y, YANG Y Q, et al. Study on laser welding residual stress of high strength steel[J]. Chinese Journal of Lasers, 2015,42(6):0603007(in Chinese).
-
期刊类型引用(11)
1. 赵婕秀,董庆利,陈培琴,王真,曹成,牛洪梅,潘磊庆,张希斌,李代禧. 高光谱成像技术在动物源性食品微生物污染快速检测中的应用进展. 食品工业科技. 2022(07): 467-473 . 百度学术
2. 姜莎,闫彩霞,范鑫,张彦斌,张宏博. 无损检测技术在羊肉品质分析中的研究进展. 肉类工业. 2021(02): 38-44 . 百度学术
3. 王可,王慧琴,殷颖,毛力,张毅. 基于光谱重建技术的壁画颜色复原与评价. 激光技术. 2019(02): 280-285 . 本站查看
4. 王彩霞,王松磊,贺晓光,董欢. 基于可见/近红外高光谱成像技术的牛肉品种鉴别. 食品工业科技. 2019(12): 241-247 . 百度学术
5. 孟庆龙,张艳,尚静. 光纤光谱结合模式识别无损检测苹果表面疤痕. 激光技术. 2019(05): 86-90 . 本站查看
6. 辛世华,韩小珍,王彩霞. 基于高光谱成像技术对牛肉品种判别的研究. 食品研究与开发. 2019(20): 190-194 . 百度学术
7. 曾言,曾延安,张南洋生,赵宇,龙建明. 一种改善成像光谱仪光谱检测能力的新方法. 激光技术. 2018(02): 196-200 . 本站查看
8. 魏菁,郭中华,徐静. 基于高光谱和极限学习机的冷却羊肉表面细菌总数检测. 江苏农业科学. 2018(24): 211-214 . 百度学术
9. 杜家蒙,陈国庆,马超群,奚留华,朱纯,赵金辰,顾颂. 应用3维同步荧光光谱测定胭脂红浓度. 激光技术. 2017(04): 503-506 . 本站查看
10. 杨灵,吴霆,蔡旭灿. 光谱技术在肉类检测中的应用及研究进展. 广东农业科学. 2016(05): 162-168 . 百度学术
11. 王龙,邱园园,李小波. 基于高光谱成像技术的牛羊肉品质无损检测研究进展. 新疆农垦科技. 2015(06): 70-72 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 5
- HTML全文浏览量: 0
- PDF下载量: 5
- 被引次数: 25