Processing math: 100%
高级检索

一种基于LS-WTLS的稳健平面拟合方法

欧江霞, 邓雄文, 蔡茂欣, 邱敏

欧江霞, 邓雄文, 蔡茂欣, 邱敏. 一种基于LS-WTLS的稳健平面拟合方法[J]. 激光技术, 2020, 44(6): 784-788. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.024
引用本文: 欧江霞, 邓雄文, 蔡茂欣, 邱敏. 一种基于LS-WTLS的稳健平面拟合方法[J]. 激光技术, 2020, 44(6): 784-788. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.024
OU Jiangxia, DENG Xiongwen, CAI Maoxin, QIU Min. A robust methods of fitting plane based on LS-WTLS[J]. LASER TECHNOLOGY, 2020, 44(6): 784-788. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.024
Citation: OU Jiangxia, DENG Xiongwen, CAI Maoxin, QIU Min. A robust methods of fitting plane based on LS-WTLS[J]. LASER TECHNOLOGY, 2020, 44(6): 784-788. DOI: 10.7510/jgjs.issn.1001-3806.2020.06.024

一种基于LS-WTLS的稳健平面拟合方法

基金项目: 

国家自然科学基金资助项目 41974214

详细信息
    作者简介:

    欧江霞(1989-),男,硕士,注册测绘师,主要从事大地测量数据处理方法的研究。E-mail:oujiangxia666@163.com

  • 中图分类号: P207

A robust methods of fitting plane based on LS-WTLS

  • 摘要: 为了解决平面数据点位精度差异性及平面模型常数项解算精度较低的问题,提出了一种基于最小二乘-加权总体最小二乘(LS-WTLS)的稳健平面拟合方法。该方法采用加权最小二乘模型与稳健估计IGGⅢ方案相结合的方式对平面模型误差项参量进行解算,然后通过设置阈值剔除粗差数据,利用最小二乘法对平面模型常数项进行解算,以此进一步提高了平面模型各参量的解算精度。结果表明, 新方法相对于最小二乘(LS)法、总体最小二乘(TLS)法、LS-TLS法、IGGⅢ-LS-TLS法,其单位权中误差分别提高了53.6%, 195.0%, 47.5%和5.1%,平面拟合精度分别提高了49.4%, 179.3%, 48.7%和46.99%,表现出了良好的抗粗差干扰能力。该研究验证了新方法在平面拟合领域的优越性和可靠性。
    Abstract: In order to solve the positional accuracy difference of plane data and the low calculation precision of plane model's constant term, a robust plane fitting method based on least squares-weighted total least square (LS-WTLS) was proposed. This method uses least squares model and robust estimation of IGGⅢ scheme to calculate the error parameters of plane model. Meanwhile, after rejecting the gross error data by setting the threshold, the constant term of plane model was calculated by using least square model. And based on this model, the accuracy of plane parameters was further improved. The new method shows favorable resistant to gross errors in experiments of fit the simulated plane data, meanwhile, the observed plane data fitting experiments show that compared with LS method, TLS method, LS-TLS method, IGGⅢ-LS-TLS method, the new method's mean square error of unit weight increased by 53.6%, 195.0%, 47.5%, and 5.1%, respectively, and its plane fitting accuracy increased by 53.6%, 195.0%, 47.5%, and, 5.1%, respectively. The results effectively verify this new method's superiority and reliability in the field of plane fitting.
  • Table  1   Plane parameters and fitting precision of simulated data

    proportion of σ Δ|a| Δ|b| Δ|c| ˆσ0 ˆσp
    0% LS 0 0 0.0007 0.0152 0.0029
    TLS 0 0 0.0009 0.0152 0.0029
    LS-TLS 0 0 0.0007 0.0030 0.0029
    IGGⅢ-LS-TLS 0 0 0.0007 0.0024 0.0029
    LS-WTLS 0 0 0.0003 0.0023 0.0022
    5% LS 0.0020 0 0.0047 3.5046 0.6770
    TLS 0.0158 0.0064 15.2664 6.4890 1.2569
    LS-TLS 0.0020 0 0.0047 3.5046 0.6770
    IGGⅢ-LS-TLS 0.0003 0.0002 0.3013 0.2115 0.6843
    LS-WTLS 0.0001 0 0.0028 0.0565 0.0556
    10% LS 0.0036 0.0008 1.7493 4.1745 0.8067
    TLS 0.0193 0.0081 19.1327 7.4930 1.4523
    LS-TLS 0.0035 0.0008 1.7493 4.1745 0.8067
    IGGⅢ-LS-TLS 0 0.0001 0.7808 0.1841 0.8314
    LS-WTLS 0 0.0001 0.0718 0.0823 0.0810
    20% LS 0.0113 0.0020 2.6627 11.0755 2.1427
    TLS 0.1209 0.0527 124.3950 44.9742 8.8819
    LS-TLS 0.0111 0.0019 2.5019 2.1755 2.1427
    IGGⅢ-LS-TLS 0.0016 0.0006 4.6832 0.94298 2.2148
    LS-WTLS 0.0014 0.0005 0.4423 0.51715 0.5080
    下载: 导出CSV

    Table  2   Observed data of plane

    X Y Z
    1 11.2 36.0 -5.0
    2 10.0 40.0 -6.8
    3 8.5 35.0 -4.0
    4 8.0 48.0 -5.2
    5 9.4 53.0 -6.4
    6 8.4 23.0 -6.0
    7 3.1 19.0 -7.1
    8 10.6 34.0 -6.1
    9 4.7 24.0 -5.4
    10 11.7 65..0 -7.7
    11 9.4 44.0 -8.1
    12 10.1 31.0 -9.3
    13 11.6 29.0 -9.3
    14 12.6 58.0 -5.1
    15 10.9 37.0 -7.6
    16 23.1 46.0 -9.6
    17 23.1 50.0 -7.7
    18 21.6 44.0 -9.3
    19 23.1 56.0 -9.5
    20 19.0 36.0 -5.4
    21 26.8 58.0 -16.8
    22 21.9 51.0 -9.9
    下载: 导出CSV

    Table  3   Plane parameters and fitting precision of observed data

    ˆa ˆb ˆc ˆσ00 ˆσp
    LS -0.2710 0.0085 -4.2789 2.1536 1.9316
    TLS -0.2558 0.2616 -15.9565 4.1357 3.6093
    LS-TLS -0.3108 0.0215 -4.2807 2.0680 1.9219
    IGGⅢ-LS-TLS -0.2111 0.0279 -5.8982 1.4735 1.8997
    LS-WTLS -0.2384 0.0388 -5.8379 1.4018 1.2924
    下载: 导出CSV
  • [1]

    WU Ch, YUAN Y B, ZHANG M Y. Plane target positioning based on reflection intensity and k-means clustering method.Laser Technology, 2015, 39(3): 341-343(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201503013

    [2]

    OU J X, LIU W Ch, CAI M X. Study on influence factors of scanning quality for leica scanstation C10 terrestrial laser scanner [J]. Geospatial Information, 2017, 15(6): 103-106(in Chinese). https://www.researchgate.net/publication/41057714_Incidence_angle_influence_on_the_quality_of_terrestrial_laser_scanning_points

    [3]

    BURKHARD S, YARON A F. On the multivariate total least-squares approach to empirical coordinate transformations [J]. Journal of Geodesy, 2008, 82(7): 373-383. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d6332de5e749b6d7d8edcdfd862f9801

    [4]

    LU T D, ZHOU Sh J. An iterative algorithm for total least squares sstimation [J]. Geomatics an Information Science of Wuhan University, 2010, 35(11):1351-1354(in Chinese).

    [5]

    GUAN Y L, LIU Sh T, ZHOU Sh J. Robust plane fitting of point clouds based on TLS.Journal of Geodesy and Geodynamics, 2011, 31(5):80-83(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201105017

    [6]

    GONG X Q. A roubust weighted total least squares method [J].Acta Geodaetica et Cartographica Sinica, 2014, 47(10):462-466(in Chinese). DOI: 10.1061/%28ASCE%29SU.1943-5428.0000055

    [7]

    BURKHARD S, YARON W. On weighted total least-squars adjustment for linear regression[J]. Journal of Geodesy, 2008, 82(6): 415-421. DOI: 10.1007%2Fs00190-007-0190-9

    [8]

    SHEN Y Z, LI B F, FELUS Y A. An iterative solution of weighted total least-squares adjustment [J]. Journal of Geodesy, 2010, 85(4):229-238. DOI: 10.1007/s00190-010-0431-1

    [9]

    LI M F, OU J X, TAN D. Study on fixed weight methods in plane fitting of point clouds based on weighted total least squares [J]. Journal of Geodesy and Geodynamics, 2015, 35(6): 428-432(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dkxbydz201503015

    [10]

    OU J X, LI M F, WANG Y M. Plane fitting of point clouds based on robust weighted total least squares [J]. Journal of Geodesy and Geodynamics, 2014, 34(6): 160-163(in Chinese). https://www.sciencedirect.com/science/article/pii/S0263224118309357

    [11]

    OU J X, LIU W Ch. Fitting of sphere point clouds by weighted total least squares based on IGGⅢ Scheme.Laser Technology, 2017, 41(5): 749-753(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201705026

    [12]

    GONG X Q, LI Zh L. A roubust mixed LS-TLS based on IGGⅡ scheme [J]. Geomatics an Information Science of Wuhan University, 2014, 39(4): 462-466(in Chinese).

    [13]

    WANG X Zh, TAO B Z, QIU W N. Advanced surveying adjustment [M]. Beijing: Survey and Mapping Press, 2006:73-89(in Chinese). https://www.sciencedirect.com/science/article/pii/S0264370717300832

    [14]

    WANG H Y, ZHANG Y. Data processing of laser rangefinder based on robust estimation [J].Journal of Atmospheric and Environmental Optics, 2007, 2(3): 228-231(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqyhjgxxb200703015

    [15]

    WU J F, YANG Y X. Robust estimation for correlated GPS baseline vector network [J].Acta Geodaetica et Cartographica Sinica, 2001, 30(3): 247-251(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=chxb200103012

    [16]

    QIU W N, TAO B Z, YAO Y B. et al. The theory and method surveying data processing[M]. Wuhan: Wuhan University Press, 2008:54-64(in Chinese).

表(3)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  4
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-13
  • 修回日期:  2020-01-16
  • 发布日期:  2020-11-24

目录

    /

    返回文章
    返回