高级检索

移频延时自外差法的DFB激光器线宽测量

王可宁, 刘允雷, 陈海滨, 郭子龙

王可宁, 刘允雷, 陈海滨, 郭子龙. 移频延时自外差法的DFB激光器线宽测量[J]. 激光技术, 2018, 42(5): 633-637. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.010
引用本文: 王可宁, 刘允雷, 陈海滨, 郭子龙. 移频延时自外差法的DFB激光器线宽测量[J]. 激光技术, 2018, 42(5): 633-637. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.010
WANG Kening, LIU Yunlei, CHEN Haibin, GUO Zilong. Line-width measurement of DFB laser based on frequency shift delay self-heterodyning method[J]. LASER TECHNOLOGY, 2018, 42(5): 633-637. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.010
Citation: WANG Kening, LIU Yunlei, CHEN Haibin, GUO Zilong. Line-width measurement of DFB laser based on frequency shift delay self-heterodyning method[J]. LASER TECHNOLOGY, 2018, 42(5): 633-637. DOI: 10.7510/jgjs.issn.1001-3806.2018.05.010

移频延时自外差法的DFB激光器线宽测量

基金项目: 

陕西省教育厅2016年度专项科学研究计划资助项目 16JK1370

详细信息
    作者简介:

    王可宁(1975-), 女, 副教授, 主要从事光电检测技术的研究。E-mail:77319436@qq.com

  • 中图分类号: O433.3;TN248.4

Line-width measurement of DFB laser based on frequency shift delay self-heterodyning method

  • 摘要: 为了测量分布反馈(DFB)单模半导体激光器线宽,采用一种新颖的基于马赫-曾德尔干涉结构的光纤自外差测量方案,设计了一套全光纤延时自外差法测量系统,并进行了理论分析。在此基础上搭建了延时光纤长度分别为900m,3000m和6000m的窄带线宽测量系统,对实验室一台中心波长为1550nm、标称线宽值为800kHz的DFB单模半导体激光器光源进行了测试,测得激光器线宽值分别为951.566kHz,832.471kHz和802.221kHz,并对所设计的方案进行了模拟仿真验证。结果表明,与模拟仿真结果作对比,延时光纤长度为6000m时的窄带线宽测量系统最优,其误差在3%之内,证明了所用自外差干涉原理的合理性和准确性。全光纤移频延时自外差法对测量DFB激光器线宽具有优越性和重要的实用价值。
    Abstract: In order to measure the line-width of distributed feedback(DFB) diode single mode semiconductor laser, novel optical fiber self-heterodyne measurement scheme based on Mach-Zehnder interference structure was adopted and a set of all fiber time-delay self-heterodyne measurement system was designed. After theoretical analysis, narrow band line-width measurement system with time-delay fiber length of 900m, 3000m and 6000m was set up. A DFB single mode laser source with center wavelength of 1550nm and nominal line-width of 800kHz was tested. The measured line-width values of laser were 951.566kHz, 832.471kHz and 802.221kHz respectively. The designed scheme is verified by simulation. The results show that, compared with the simulation results, narrowband line-width measurement system with the length of 6000m is optimal, and its error is within 3%, which proves the rationality and accuracy of self-heterodyne interference principle. All fiber frequency shift delay self-heterodyne method has advantages and practical value for measuring the line-width of DFB lasers.
  • Figure  1.   Device diagram of beat test of laser line-width

    Figure  2.   Time-domain image of monochromatic light

    Figure  3.   Power spectral density curve of 900m simulation light source

    Figure  4.   Power spectral density curve of 3000m simulation light source

    Figure  5.   Power spectral density curve of 6000m simulation light source

    Table  1   Linewidth measurement of light source with linewidth 800kHz at different delay fiber lengths

    L/m 300 600 900 1200 1500
    ν′/kHz 1414.325 1136.122 951.566 926.318 903.231
    L/m 1800 2100 2400 2700 3000
    ν′/kHz 883.316 868.719 856.506 844.209 832.471
    L/m 3300 3600 3900 4200 4500
    ν′/kHz 828.440 820.274 817.669 812.663 809.812
    L/m 4800 5100 5400 5700 6000
    ν′/kHz 806.375 805.228 804.879 803.849 802.221
    下载: 导出CSV
  • [1]

    WANG H X, CHEN J D, CHANG T Y, et al. Research of modulation characteristics of distributed feedback laser[J]. Laser Technology, 2017, 41(6):836-840(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201706014.htm

    [2]

    WEI Zh P. Narrow linewidth laser spectral width measurement based on time delay self-heterodyne method[J]. Optics and Optoelectronics Technology, 2015, 13(3):38-40(in Chinese).

    [3]

    JIA Y D, OU P, YANG Y H, et al. Short fiber delay self heterodyne method to measure linewidth of narrow linewidth laser[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(5):568-571(in Chinese).

    [4]

    PENG J X. Research on narrow linewidth laser linewidth measurement system[D].Beijing: Beijing University of Posts and Telecommunications, 2015: 2-3(in Chinese).

    [5]

    OKOSHI T, KIKUCHI K, NAKAYAMA A. Novel method for high resolution measurement of laser output spectrum[J]. Electron Lett-ers, 1980, 16(16):630-631. DOI: 10.1049/el:19800437

    [6]

    WU T, HUI R Q, ZHANG J P, et al. Full-fiber dual-window high-resolution delay self-heterodyne measurement system[J]. Journal of Beijing University of Posts and Telecommunications, 1990, 13(2):1-6(in Chinese).

    [7]

    XIE D H, DENG D P, GUO L, et al. Narrow line width laser line width measurement method[J]. Laser & Optoelectronics Progress, 2013, 50(1):10006(in Chinese). http://d.old.wanfangdata.com.cn/NSTLHY/NSTL_HYCC029715747/

    [8]

    HU J B, LI M P. Design of novel tunable semiconductor lasers in optical fiber communication systems[J]. Laser Technology, 2016, 40(2):280-283(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201602027

    [9]

    FENG S Ch. Multiwavelength single longitudinal mode fiber laser[D]. Beijing: Beijing Jiaotong University, 2010: 111-116(in Chin-ese).

    [10]

    HAN M, WANG A. Analysis of los-compensated recirculating delayed self-heterodyne interferometer for laser linewidth measurement[J]. Applied Physics, 2005, B81(23):53-58. DOI: 10.1007/s00340-005-1871-9

    [11]

    YU B L, YANG J R, YANG Y H, et al. Zero-beat measurement of narrow linewidth laser[J]. Chinese Journal of Lasers, 2001, 28(4):351-354(in Chinese).

    [12]

    DONG Y B. Study of related quantumeffect induced by electromagnetic induced coherent medium[D]. Taiyuan: Shanxi University, 2006: 39-45(in Chinese).

    [13]

    SUN X H. Single longitudinal mode fiber laser and its linewidth measurement[D]. Beijing: Beijing Jiaotong University, 2008: 40-52(in Chinese).

    [14]

    CAO Ch Y, YAO Q, RAO W, et al. Measurement of linewidth of unbalanced fiber interferometer with narrow linewidth laser[J]. Chinese Journal of Lasers, 2011, 38(5):508005(in Chinese). DOI: 10.3788/CJL

    [15]

    ZHOU W, CHONG K M, GUO H. Linewidth measurement of Littrow structure semiconductor laser with improved methods[J]. Physics Letters, 2008, A372(23):4327-4332. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2029e1ff971c96f6c2504e0f8aa150fd

    [16]

    XIAO H J, WANG X, MA Y, et al. Linewidth measurement of na-rrow-linewidth fiber laser based on DSHI[J].Opto-Electronics Engineering, 2010, 37(8):57-61(in Chinese).

    [17]

    LIU J W, DU Zh H, GAO D Y, et al. Research on the dynamic characteristics of semiconductor laser tuning[J]. Laser Journal, 2012, 32(6):6-10(in Chinese).

    [18]

    GAO D Y. Research and instrument development of quasi-continuous tuning laser absorption spectroscopy[D]. Tianjin: Tianjin University, 2011: 21-25(in Chinese).

  • 期刊类型引用(2)

    1. 杨翠, 吴冰, 樊炳倩. 基于数学分析的高斯光束光斑半径测量方法. 激光杂志. 2020(07): 194-198 . 百度学术
    2. 靳龙, 张兴强. 圆形周期介质内艾里光束的传输特性. 激光技术. 2019(03): 432-436 . 本站查看

    其他类型引用(1)

图(5)  /  表(1)
计量
  • 文章访问数:  9
  • HTML全文浏览量:  0
  • PDF下载量:  20
  • 被引次数: 3
出版历程
  • 收稿日期:  2017-11-11
  • 修回日期:  2017-12-24
  • 发布日期:  2018-09-24

目录

    /

    返回文章
    返回