Study on anti-atmospheric turbulence interference of light borne microwave signal
-
摘要: 为了研究射频强度调制激光信号光源的参量,特别是调制深度对调制波的抗干扰能力产生的影响,采用干涉法对射频强度调制激光信号在通过大气湍流干扰后其相位的变化进行了理论分析和实验验证。搭建了Mach-Zehnder干涉仪,参加干涉的两束光分别为未经调制的单频光和调制后的双频光。以干涉条纹对比度作为信号相位起伏的衡量标准,比较不同大气湍流干扰条件下,干涉条纹的对比度随调制深度的变化。大气湍流由空间光调制器模拟产生,分别在26.32%,42.04%,67.59%和85.04% 4种调制深度下,比较有无大气湍流时干涉条纹的对比度的变化。结果表明,调制信号的调制度越深,其抗大气湍流干扰的能力越强。该结论对双频激光雷达光源的选择具有一定的参考意义。Abstract: In order to study effect of parameters of radio frequency(RF) intensity modulation laser signal sources, especially modulation index, on anti-atmospheric turbulence interference, phase change of the RF intensity modulation laser signal passing through atmospheric turbulence was analyzed theoretically and verified experimentally. A Mach-Zehnder interferometer was built, and two interference beams were single frequency light without modulation and dual frequency light with modulation respectively. The contrast of interference fringes was taken as the criterion of signal phase fluctuation. The contrast of interference fringes with the change of modulation depth were compared under different atmospheric turbulence conditions.The atmospheric turbulence was generated by the simulation of spatial light modulator. The contrast of interference fringes with and without atmospheric turbulence was compared under four modulation depths of 26.32%, 42.04%, 67.59% and 85.04%, respectively. The results show that, the deeper the modulation level of modulation signal is, the stronger its ability to resist atmospheric turbulence is. The conclusion has some reference significance for the selection of dual frequency lidar light sources.
-
Keywords:
- physical optics /
- modulation index /
- interference /
- atmospheric turbulence /
- fringe contrast
-
-
Table 1 Interference fringe contrasts at different modulation depths and their changes
modulation index M interference fringe contrast without atmospheric turbulence V1 interference fringe contrast with atmospheric turbulence V2 change of interference fringe contrastΔ=V1-V2 26.32% 63.72% 56.41% 7.31% 42.04% 68.06% 60.96% 7.10% 67.59% 71.87% 67.78% 4.09% 85.04% 72.47% 71.65% 0.82% -
[1] COCHENOUR B, MULLEN L, MUTH J. A modulated pulse laser for underwater detection, ranging, imaging, and communications[J]. Proceedings of the SPIE, 2012, 8372:83720S. DOI: 10.1117/12.918711
[2] MULLEN L J, VIEIRA A J C, HEREZFELD P R, et al. Application of RADAR technology to aerial LIDAR systems for enhancement of shallow underwater target detection[J]. IEEE Transactions on Microwave Theory & Techniques, 1995, 43(9):2370-2377. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=414591
[3] ILLIG D W, LEE R W, MULLEN L J. FMCW optical ranging technique in turbid waters[J].Proceedings of the SPIE, 2015, 9459:94590B. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=db99e9853fadba15b92117b611e33cf3
[4] YI F, OU F, LIU B Y, et al. Electro-optic modulator with exceptional power-size performance enabled by transparent conducting electrodes[J]. Optics Express, 2010, 18(7):6779-6796. DOI: 10.1364/OE.18.006779
[5] AHMAD H, AMIRI I S, SOLTANIAN M R K, et al. Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber[J]. Journal of Lightwave Technology, 2015, 33(24):5038-5046. DOI: 10.1109/JLT.2015.2495255
[6] ROLLAND A, FREIN V, VALLET M, et al. 40GHz photonic synthesizer using a dual-polarization microlaser[J]. IEEE Photonics Technology Letters, 2010, 22(23):1738-1740. DOI: 10.1109/LPT.2010.2084077
[7] JUAN Y S, LIN F Y. Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser[J]. IEEE Photonics Journal, 2011, 3(4):644-650. DOI: 10.1109/JPHOT.2011.2158413
[8] HAMEL C, BONDU F, LOAS G, et al. Dual frequency laser with two continuously and widely tunable frequencies for optical referencing of GHz to THz beatnotes[J]. Optics Express, 2014, 22(15):17673-17678. DOI: 10.1364/OE.22.017673
[9] GILLES H, THÉVENIN J, BRUNEL M, et al. Beat-note locking in dual-polarization lasers submitted to frequency-shifted, optical feedback[J]. Journal of the Optical Society of America, 2011, B28(5):1104-1110. http://www.opticsinfobase.org/vjbo/abstract.cfm?uri=josab-28-5-1104
[10] KANG Y, YANG S, BRUNEL M, et al. Second-harmonic generation of a dual-frequency laser in a MgO:PPLN crystal[J]. Applied Optics, 2017, 56(11):2968-2972. DOI: 10.1364/AO.56.002968
[11] ZHENG Zh, ZHAO Ch M, ZHANG H Y, et al. Phase noise reduction by using dual-frequency laser in coherent detection[J]. Optics & Laser Technology, 2016, 80:169-175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=47ca6e32f29096b1046b17cbd8e90493
[12] XIANG J S. High-frequency error compensation method for the fast fourier transform-based turbulent phase screen[J]. Acta Optica Sinica, 2014, 34(10):1001003(in Chinese). DOI: 10.3788/AOS
[13] BEGHI A, MASIERO A, CENEDESE A. Multiscale stochastic approach for phase screens synthesis[J]. Applied Optics, 2011, 50(21):4124-33. DOI: 10.1364/AO.50.004124
[14] FENG F, LI Ch W. Simulation of atmospheric turbulence phase screen based on wavelet analysis[J]. Acta Optica Sinica, 2017, 37(1):0101004(in Chinese). DOI: 10.3788/AOS
[15] NIU H H, HAN Y P. Performance analysis of Bessel-Gaussian vortex beam's propagation in atmospheric turbulence[J]. Laser Technology, 2017, 41(3):451-455(in Chinese). http://www.jgjs.net.cn/EN/Y2017/V41/I3/451
-
期刊类型引用(3)
1. 张亚男,牛春晖,赵爽,吕勇. 近红外激光对图像传感探测器的干扰研究. 激光技术. 2020(04): 418-423 . 本站查看
2. 刘贺雄,周冰,贺宣,高宇辰,范磊. APD对湍流大气中激光的双重随机探测过程. 激光技术. 2019(04): 35-39 . 本站查看
3. 刘贺雄,周冰,高宇辰. APD探测系统的噪声特性及其影响因素研究. 激光技术. 2018(06): 862-867 . 本站查看
其他类型引用(2)