高级检索

磁场激励下焊接缺陷磁光成像特征分析

马女杰, 高向东, 周晓虎, 张艳喜

马女杰, 高向东, 周晓虎, 张艳喜. 磁场激励下焊接缺陷磁光成像特征分析[J]. 激光技术, 2018, 42(4): 525-530. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.017
引用本文: 马女杰, 高向东, 周晓虎, 张艳喜. 磁场激励下焊接缺陷磁光成像特征分析[J]. 激光技术, 2018, 42(4): 525-530. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.017
MA Nüjie, GAO Xiangdong, ZHOU Xiaohu, ZHANG Yanxi. Analysis of magneto-optical imaging characteristics of weld defects under magnetic field excitation[J]. LASER TECHNOLOGY, 2018, 42(4): 525-530. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.017
Citation: MA Nüjie, GAO Xiangdong, ZHOU Xiaohu, ZHANG Yanxi. Analysis of magneto-optical imaging characteristics of weld defects under magnetic field excitation[J]. LASER TECHNOLOGY, 2018, 42(4): 525-530. DOI: 10.7510/jgjs.issn.1001-3806.2018.04.017

磁场激励下焊接缺陷磁光成像特征分析

基金项目: 

广东省科技计划资助项目 2016A010102015

国家自然科学基金资助项目 51675104

详细信息
    作者简介:

    马女杰(1991-), 女, 硕士研究生, 主要研究方向为焊接自动控制和图像处理技术等方面

    通讯作者:

    高向东, E-mail:gaoxd666@126.com

  • 中图分类号: TP212.1+3;TG456.7

Analysis of magneto-optical imaging characteristics of weld defects under magnetic field excitation

  • 摘要: 为了研究磁场激励下焊接缺陷磁光成像特征,以激光焊低碳钢板为试验对象,采用恒定磁场和50Hz交变磁场对焊接缺陷进行励磁,并由磁光成像传感器实时获取焊接缺陷区域磁场分布,进行了理论分析和实验验证。取得了恒定磁场和交变磁场励磁下厚度分别为1mm,2mm和3mm低碳钢(Q235)焊接缺陷的磁光图像,并与COMSOL模拟结果进行对比;通过加权平均图像融合技术将交变磁场中获得的焊接缺陷磁光图像进行融合。结果表明,与恒定磁场励磁相比,采用交变励磁获得的焊接缺陷信息更加准确、快速和完整,并且有效避免了焊接缺陷信息的遗漏。此研究为提高焊接缺陷检测效率提供了依据。
    Abstract: In order to study the characteristics of magnetic-optical images of weld defects excited by magnetic field, low carbon steel of laser welding was used as test object and the welding defects were excited by constant magnetic field and 50Hz alternating magnetic field. Real-time magnetic field distribution of welding defect area was obtained by magnetic-optical imaging sensor. Through theoretical analysis and experimental verification, the magneto-optic images of welding defects of low carbon steel (Q235) of thickness of 1mm, 2mm and 3mm with constant magnetic field and alternating magnetic field were obtained, and then, were compared with COMSOL simulation results. The weighted average image fusion technique was used to fuse the magnetic-optical images of welding defects in the alternating magnetic field. The results show that, compared with the excitation of constant magnetic field, the welding defect information obtained by the alternating excitation is more accurate, fast and complete, and avoids the omission of welding defect information effectively. This study provides the basis for improving the detection efficiency of welding defects.
  • Figure  1.   Working principle of magneto-optical imaging sensor to detect the seam

    Figure  2.   Experimental system of the welded defects detection

    Figure  3.   Physical map (Fig. 3a~Fig. 3c) and ROI (Fig. 3d~Fig. 3f) of weld surface of low carbon steel plates

    Figure  4.   Gray-scale image of magneto-optic images and 100 columns of gray value in constant magnetic field

    Figure  5.   y component of magnetic field strength of weld surfacein constant magnetic field

    Figure  6.   Distribution map of ideal sampling points

    Figure  7.   Three consecutive frames of magneto-optical grayscale graph under alternating excitation

    Figure  8.   y component curve of the strength of the simulated magnetic field

    Figure  9.   Gray graphs and gray value curves after the fusion of magnetic and optical images

    Table  1   Test conditions of magneto-optical imaging

    weldment material weldment size(length×width×thickness)/mm excitation method excitation frequency f/Hz imaging pixels/pixel
    low-carbon steel 100×50×1(2 or 3) constant magnetic field no 400×400
    alternating magnetic field 50Hz 400×400
    下载: 导出CSV

    Table  2   Pixel extremum of the magneto-optical image of the welding defects

    plate thickness h/mm defect type x1/pixel x2/pixel difference x/pixel actual width/mm
    1 0.1mm wide crack 168 209 41 0.402
    2 0.05mm wide crack 186 210 24 0.235
    3 splash 94 112 18 0.176
    下载: 导出CSV
  • [1]

    ZHANG Y L, ZHANG H Ch, ZHAO J X, et al. Review of non-destructive testing for remanufacturing of high end equipment[J]. Journal of Mechanical Engineering, 2013, 53(7):80-90(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jxgcxb201307012

    [2]

    KOSCHNY M, LINDNER M. Magneto-optical sensors accurately analyze magnetic field distribution of magnetic materials[J]. Advanced Materials & Processes, 2012, 170(2):13-16. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2fba62e4b6f5f26f7f607702d4d03bf8

    [3]

    GAO X D, CHEN Y Q, YOU D Y, et al. Detection of micro gap weld joint by using magneto-optical imaging and Kalman filtering compensated with RBF neural network[J]. Mechanical Systems & Signal Processing, 2017, 84:570-583. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0bf5b6f796bd63bf47b5f3d35e9e6138

    [4]

    GAO X D, WU J J. Approach of detecting and tracking micro weld joint based on magneto optical imaging[J]. Journal of Mechanical Engineering, 2015, 51(4):71-77(in Chinese). DOI: 10.3901/JME.2015.04.071

    [5]

    HU X Ch, LUO F L, HE B Z, et al. Pulsed alternating current field measurement technique for defect identification and quantification[J]. Journal of Mechanical Engineering, 2011, 47(4):17-22(in Chinese). DOI: 10.3901/JME.2011.04.017

    [6]

    GAO X D, LAN Ch Zh, YOU D Y, et al. Weldment nondestructive testing using magneto-optical imaging induced by alternating magnetic field[J]. Journal of Nondestructive Evaluation, 2017, 36(3):55. DOI: 10.1007/s10921-017-0434-4

    [7]

    DENG Y, LIU X, UDPA L. Magneto-optic imaging for aircraft skins inspection:a probability of detection study of simulated and experimental image data[J]. IEEE Transactions on Reliability, 2011, 61(4):1-8. http://ieeexplore.ieee.org/document/6328299/

    [8]

    RICHERT H, SCHMIDT H, LINDNER S, et al. Dynamic magneto-optical imaging of domains in grain oriented electrical steel[J]. Steel Research, 2016, 87(2):232-240. DOI: 10.1002/srin.v87.2

    [9]

    GAO X D, LI G H, XIAO Zh L, et al. Detection and classification of welded defects by magneto-optical imaging based on multi-scale wavelet[J]. Optics and Precision Engineering, 2016, 24(4):930-936(in Chinese). DOI: 10.3788/OPE.

    [10]

    CHEN Y H, ZHOU Z F, YIN B B. Study on magneto optical/eddy current imaging system for real time testing[J]. Optics and Precision Engineering, 2006, 14(5):797-801(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxjmgc200605014

    [11]

    LE M, LEE J, SHOJI T. A simulation of magneto-optical eddy current imaging[J]. NDT & E International, 2011, 44(8):783-788. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2a19e415098c9778c4d922a370941b1a

    [12]

    GAO X D, HUANG G X, XIAO Zh L, et al. Micro weld detection based on magneto-optical imaging and wavelet multi-scale fusion[J]. Transactions of the China Welding Institution, 2016, 37(4):1-4(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXB201604001.htm

    [13]

    HAGHIGHAT M B A, AGHAGOLZADEH A, SEYEDARABI H. Multi-focus image fusion for visual sensor networks in DCT domain[J]. Computers & Electrical Engineering, 2011, 37(5):789-797. http://dl.acm.org/citation.cfm?id=2064186

    [14]

    PRAKASH O, KUMAR A, KHARE A. Pixel-level image fusion scheme based on steerable pyramid wavelet transform using absolute maximum selection fusion rule[C]//International Conference on Issues and Challenges in Intelligent Computing Techniques. New York, USA: IEEE, 2014: 765-770.

    [15]

    ZHENG W, SUN X Q, LI Zh. Image fusion based on Shearlet transform and region characteristics[J]. Laser Technology, 2015, 39(1):50-56(in Chinese). http://www.en.cnki.com.cn/Article_en/CJFDTotal-JGJS201501010.htm

    [16]

    LI H H, GUO L, LIU H. Research on image fusion based on the second generation curvelet transform[J]. Acta Photonica Sinica, 2006, 26(5):657-662(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/ygxb201703009

    [17]

    GAO Y, WANG A M, WANG F H, et al. Application of improved wavelet transform algorithm in image fusion[J]. Laser Technology, 2013, 37(5):690-695(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-JGJS201305029.htm

    [18]

    ZHU P, LIU Z Y, HUANG Zh H. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J/OL].(2017-05-08)[2017-11-07].http://kns.cnki.net/kcms/detail/61.1235.O4.20170508.1426.116.html (in Chinese).

  • 期刊类型引用(11)

    1. 赵婕秀,董庆利,陈培琴,王真,曹成,牛洪梅,潘磊庆,张希斌,李代禧. 高光谱成像技术在动物源性食品微生物污染快速检测中的应用进展. 食品工业科技. 2022(07): 467-473 . 百度学术
    2. 姜莎,闫彩霞,范鑫,张彦斌,张宏博. 无损检测技术在羊肉品质分析中的研究进展. 肉类工业. 2021(02): 38-44 . 百度学术
    3. 王可,王慧琴,殷颖,毛力,张毅. 基于光谱重建技术的壁画颜色复原与评价. 激光技术. 2019(02): 280-285 . 本站查看
    4. 王彩霞,王松磊,贺晓光,董欢. 基于可见/近红外高光谱成像技术的牛肉品种鉴别. 食品工业科技. 2019(12): 241-247 . 百度学术
    5. 孟庆龙,张艳,尚静. 光纤光谱结合模式识别无损检测苹果表面疤痕. 激光技术. 2019(05): 86-90 . 本站查看
    6. 辛世华,韩小珍,王彩霞. 基于高光谱成像技术对牛肉品种判别的研究. 食品研究与开发. 2019(20): 190-194 . 百度学术
    7. 曾言,曾延安,张南洋生,赵宇,龙建明. 一种改善成像光谱仪光谱检测能力的新方法. 激光技术. 2018(02): 196-200 . 本站查看
    8. 魏菁,郭中华,徐静. 基于高光谱和极限学习机的冷却羊肉表面细菌总数检测. 江苏农业科学. 2018(24): 211-214 . 百度学术
    9. 杜家蒙,陈国庆,马超群,奚留华,朱纯,赵金辰,顾颂. 应用3维同步荧光光谱测定胭脂红浓度. 激光技术. 2017(04): 503-506 . 本站查看
    10. 杨灵,吴霆,蔡旭灿. 光谱技术在肉类检测中的应用及研究进展. 广东农业科学. 2016(05): 162-168 . 百度学术
    11. 王龙,邱园园,李小波. 基于高光谱成像技术的牛羊肉品质无损检测研究进展. 新疆农垦科技. 2015(06): 70-72 . 百度学术

    其他类型引用(14)

图(9)  /  表(2)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 25
出版历程
  • 收稿日期:  2017-09-19
  • 修回日期:  2017-11-20
  • 发布日期:  2018-07-24

目录

    /

    返回文章
    返回