高级检索

光纤激光焊接过程中缺陷的监测与诊断

夏宁, 孟宪伟, 火巧英, 戴忠晨, 程力勇, 黎硕, 王春明

夏宁, 孟宪伟, 火巧英, 戴忠晨, 程力勇, 黎硕, 王春明. 光纤激光焊接过程中缺陷的监测与诊断[J]. 激光技术, 2017, 41(6): 788-792. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.004
引用本文: 夏宁, 孟宪伟, 火巧英, 戴忠晨, 程力勇, 黎硕, 王春明. 光纤激光焊接过程中缺陷的监测与诊断[J]. 激光技术, 2017, 41(6): 788-792. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.004
XIA Ning, MENG Xianwei, HUO Qiaoying, DAI Zhongchen, CHENG Liyong, LI Shuo, WANG Chunming. Monitoring and detecting of defects during fiber laser welding[J]. LASER TECHNOLOGY, 2017, 41(6): 788-792. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.004
Citation: XIA Ning, MENG Xianwei, HUO Qiaoying, DAI Zhongchen, CHENG Liyong, LI Shuo, WANG Chunming. Monitoring and detecting of defects during fiber laser welding[J]. LASER TECHNOLOGY, 2017, 41(6): 788-792. DOI: 10.7510/jgjs.issn.1001-3806.2017.06.004

光纤激光焊接过程中缺陷的监测与诊断

详细信息
    作者简介:

    夏宁(1974-), 女, 高级工程师, 主要从事轨道车辆焊接工艺方面的研究。E-mail:hanhaokj@163.com

  • 中图分类号: TG456.7

Monitoring and detecting of defects during fiber laser welding

  • 摘要: 为了识别激光焊接过程中间隙和错边缺陷,采用自身搭建的光纤激光焊接在线监测系统,实现不锈钢焊接过程中等离子体可见光信号及熔池红外光信号的实时监测,并利用滤波和短时傅里叶变换的信号处理方法对不同缺陷的光信号进行数据分析。得到了信号时域频域随焊接缺陷的变化规律,当出现间隙缺陷时,可见光信号时域幅值从1.5V降至0.2V,1000Hz~4000Hz频率成分缺失,红外光信号时域幅值由3.5V降至1.0V,2000Hz~7000Hz频率成分缺失;当出现错边缺陷时,可见光信号时域幅值从2.0V降至0.5V,红外光信号时域幅值由4.0V降至0.5V,两者0Hz~1000Hz频率成分均缺失。结果表明,可见光信号与红外光信号与激光焊接状态存在一定的相关性,利用光信号的幅值与频率的变化可以有效地识别激光焊接过程中的缺陷。这对实际生产具有一定的应用价值。
    Abstract: In order to identify gap and edge defects in laser welding process, plasma visible light signal and infrared signal of molten pool during the process of stainless steel welding was monitored by a self-made optical fiber laser welding on-line monitoring system. And the signal processing methods of filtering and short time Fourier transform were used to analyze the optical signals with different defects and the variation law of time domain and frequency domain with welding defects was obtained. When a gap defect occurred, the time domain amplitude of the visible signal decreased from 1.5V to 0.2V without any components in the range of 1000Hz~4000Hz. The time domain amplitude of infrared signal decreased from 3.5V to 1.0V without any components in the range of 2000Hz~7000Hz. When an edge defect occurred, the time domain amplitude of the visible signal decreased from 2.0V to 0.5V and the time domain amplitude of infrared signal decreased from 4.0V to 0.5V without any components in the range of 0Hz~1000Hz for both signals. The results show that there is a certain correlation between the visible signal, the infrared signal and the laser welding state. The defects in the laser welding process can be effectively identified by the change of amplitude and frequency of the optical signal. The study has certain application value for actual production.
  • Figure  1.   Schematic diagram of experiment setup

    Figure  2.   Weld beam of gap experiment and signal time domain curve

    Figure  3.   Signal time-frequency graph

    a—visible signal b—visible signal with high-pass filtering c—infrared signal d—infrared signal with high-pass filtering

    Figure  4.   Weld beam of misalignment experiment and signal time domain curve

    Figure  5.   Signal time-frequency graph

    a—visible signal b—infrared signal

    Table  1   Chemical compositions (mass fraction) of 301 stainless steel

    C Si Mn Cr Ni S P Fe
    ≤0.0015 ≤0.010 ≤0.020 0.160~0.180 0.060~0.080 ≤0.0003 ≤0.00045 balance
    下载: 导出CSV

    Table  2   Process parameters of gap experiment

    process parameters value/range
    laser power 2.5kW
    defocus amount 0mm
    side assist gas flow none
    welding speed 3.0m/min
    下载: 导出CSV
  • [1]

    ZHANG Sh X, WANG M Y, ZHANG Zh L, et al.Application of laser processing technology in railway vehicle manufacturing [DB/OL].(2013-10-26)[2016-12-28].http://navi.cnki.net/KNavi/DPaperDetail?pcode=CIPD&lwjcode=ZGVE201310002&hycode=020611(in Chinese).

    [2]

    TANG Ch.Reasearch of laser welding process of stainless steel train body[D]. Wuhan: Huazhong University of Science and Technology, 2012: 1-70(in Chinese).

    [3]

    YANG H L, JIN X Zh, XIU T F, et al.Numerical simulation of fiber laser welding of steel/aluminum dissimilar metals[J]. Laser Techno-logy, 2016, 40(4):606-609(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201604031

    [4]

    GAO D X, DUAN A Q, MENG L, et al. Relation between relative intensities of infrared radiation and welding parameter during CO2 laser welding of TA15[J]. Transactions of the China Welding Institution, 2012, 33(6):89-92(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjxb201206022

    [5]

    HU Ch K, CHENG P F, HUANG T. The behavior and control technology of laser induced plasma during laser penetration welding[J]. Laser Journal, 2003, 24(5): 78-80(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgzz200305029

    [6]

    GAO X D, YOU D Y, KATAYAMA S. A new approach to measure deviation of seam tracking in high-power fiber laser welding[J].Transactions of the China Welding Institution, 2011, 32(5):49-52(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjxb201105013

    [7]

    ZHANG P X, CHEN J H, DU W J. Quality monitoring of resistance spot welding based on image processing of welding spot surface [J].Transactions of the China Welding Institution, 2006, 27(12):57-60(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjxb200612015

    [8]

    BRUNCKO J, UHEREK F, MICHALKA M. Monitoring of laser welding by optical emission spectroscopy[J]. Laser Physics, 2003, 13(4): 669-673. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_43ba5a3a1691e9e6ba4649fb1293f1e3

    [9]

    SUN A, KANNATEY-ASIBU E, GARTNER M. Monitoring of laser weld penetration using sensor fusion [J]. Journal of Laser Applications, 2002, 14(2):114-121. DOI: 10.2351/1.1471562

    [10]

    ALI A, FARSON D. Statistical classification of spectral data for laser weld quality monitoring [J]. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2002, 124(2): 323-325. DOI: 10.1115/1.1455028

    [11]

    SZYMANSKI Z, HOFFMAN J, KURZYNA J. Plasma plume oscillations during welding of thin metal sheets with a CW CO2 laser [J]. Journal of Physics, 2001, D34(2): 189-199. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=acfb8204ae62706719424c73d3febd3e

    [12]

    WANG Ch M. Multi-sensor real-time quality diagnosis and its theoretical basis for laser welding [D].Wuhan: Huazhong University of Science and Technology, 2005: 1-154(in Chinese).

    [13]

    MIRAPEIX J, COBO A, CONDE O M, et al. Real-time arc welding defect detection technique by means of plasma spectrum optical ana-lysis[J]. NDT & E International, 2006, 39(5): 356-360. http://www.sciencedirect.com/science/article/pii/S0963869505001520

    [14]

    ZHOU C, XIA H L, CHEN G Y, et al.Effect of fiber laser welding parameters on root humps[J]. Laser Technology, 2015, 39(5):625-630(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201505009

    [15]

    WANG J, WANG C, MENG X, et al. Study on the periodic oscillation of plasma/vapour induced during high power fibre laser penetration welding[J]. Optics & Laser Technology, 2012, 44(1):67-70. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10018b92509f6b0f9368e63e59120d99

    [16]

    ZHANG X, CHEN W, ASHIDA E, et al. Relationship between weld quality and optical emissions in underwater Nd:YAG laser welding[J]. Optics & Lasers in Engineering, 2004, 41(5):717-730. http://www.sciencedirect.com/science/article/pii/S0143816603000319

    [17]

    BARDIN F, COBO A, LOPEZ-HIGUERA J M, et al. Closed-loop power and focus control of laser welding for full-penetration monitoring.Applied Optics, 2005, 44(1):13-21. DOI: 10.1364/AO.44.000013

    [18]

    SIBILLANO T, ANCONA A, BERARDI V, et al. Correlation analysis in laser welding plasma[J]. Optics Communications, 2005, 251(s1/3):139-148. http://d.old.wanfangdata.com.cn/Periodical/yjfx201803001

    [19]

    SIBILLANO T, ANCONA A, BERARDI V, et al. Correlation spectroscopy as a tool for detecting losses of ligand elements in laser welding of aluminium alloys[J]. Optics & Lasers in Engineering, 2006, 44(12):1324-1335. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=90546e739b491f9026c67080600512c6

    [20]

    SCHMIDT M, OTTO A, KAGELER C. Analysis of YAG laser lap-welding of zinc coated steel sheets[J]. CIRP Annals—Manufacturing Technology, 2008, 57(1):213-216. DOI: 10.1016/j.cirp.2008.03.043

    [21]

    SHAO J, YAN Y. Review of techniques for on-line monitoring and inspection of laser welding[C]//Journal of Physics Conference Series. Bristol, UK: IOP Publishing Ltd., 2005: 101-107.

  • 期刊类型引用(11)

    1. 赵婕秀,董庆利,陈培琴,王真,曹成,牛洪梅,潘磊庆,张希斌,李代禧. 高光谱成像技术在动物源性食品微生物污染快速检测中的应用进展. 食品工业科技. 2022(07): 467-473 . 百度学术
    2. 姜莎,闫彩霞,范鑫,张彦斌,张宏博. 无损检测技术在羊肉品质分析中的研究进展. 肉类工业. 2021(02): 38-44 . 百度学术
    3. 王可,王慧琴,殷颖,毛力,张毅. 基于光谱重建技术的壁画颜色复原与评价. 激光技术. 2019(02): 280-285 . 本站查看
    4. 王彩霞,王松磊,贺晓光,董欢. 基于可见/近红外高光谱成像技术的牛肉品种鉴别. 食品工业科技. 2019(12): 241-247 . 百度学术
    5. 孟庆龙,张艳,尚静. 光纤光谱结合模式识别无损检测苹果表面疤痕. 激光技术. 2019(05): 86-90 . 本站查看
    6. 辛世华,韩小珍,王彩霞. 基于高光谱成像技术对牛肉品种判别的研究. 食品研究与开发. 2019(20): 190-194 . 百度学术
    7. 曾言,曾延安,张南洋生,赵宇,龙建明. 一种改善成像光谱仪光谱检测能力的新方法. 激光技术. 2018(02): 196-200 . 本站查看
    8. 魏菁,郭中华,徐静. 基于高光谱和极限学习机的冷却羊肉表面细菌总数检测. 江苏农业科学. 2018(24): 211-214 . 百度学术
    9. 杜家蒙,陈国庆,马超群,奚留华,朱纯,赵金辰,顾颂. 应用3维同步荧光光谱测定胭脂红浓度. 激光技术. 2017(04): 503-506 . 本站查看
    10. 杨灵,吴霆,蔡旭灿. 光谱技术在肉类检测中的应用及研究进展. 广东农业科学. 2016(05): 162-168 . 百度学术
    11. 王龙,邱园园,李小波. 基于高光谱成像技术的牛羊肉品质无损检测研究进展. 新疆农垦科技. 2015(06): 70-72 . 百度学术

    其他类型引用(14)

图(5)  /  表(2)
计量
  • 文章访问数:  4
  • HTML全文浏览量:  0
  • PDF下载量:  8
  • 被引次数: 25
出版历程
  • 收稿日期:  2016-12-27
  • 修回日期:  2017-03-30
  • 发布日期:  2017-11-24

目录

    /

    返回文章
    返回