高级检索

32×32 Si盖革模式激光焦平面探测器

王江, 王鸥, 刘向东, 袁利, 柯尊贵, 郝昕, 覃文治, 杨赟秀

王江, 王鸥, 刘向东, 袁利, 柯尊贵, 郝昕, 覃文治, 杨赟秀. 32×32 Si盖革模式激光焦平面探测器[J]. 激光技术, 2024, 48(5): 665-670. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.008
引用本文: 王江, 王鸥, 刘向东, 袁利, 柯尊贵, 郝昕, 覃文治, 杨赟秀. 32×32 Si盖革模式激光焦平面探测器[J]. 激光技术, 2024, 48(5): 665-670. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.008
WANG Jiang, WANG Ou, LIU Xiangdong, YUAN Li, KE Zungui, HAO Xin, QIN Wenzhi, YANG Yunxiu. 32×32 Si Geiger-mode laser focal plane detector[J]. LASER TECHNOLOGY, 2024, 48(5): 665-670. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.008
Citation: WANG Jiang, WANG Ou, LIU Xiangdong, YUAN Li, KE Zungui, HAO Xin, QIN Wenzhi, YANG Yunxiu. 32×32 Si Geiger-mode laser focal plane detector[J]. LASER TECHNOLOGY, 2024, 48(5): 665-670. DOI: 10.7510/jgjs.issn.1001-3806.2024.05.008

32×32 Si盖革模式激光焦平面探测器

基金项目: 

国家重点研发计划资助项目 2021YFB3203101

详细信息
    通讯作者:

    王鸥: WANG Ou, eyiwang@163.com

  • 中图分类号: TN215; O475

32×32 Si Geiger-mode laser focal plane detector

  • 摘要: 为了满足350 nm~1100 nm波长范围内远距离及微弱激光3维成像探测的需求,提出了一种规模为32×32的盖革模式硅激光焦平面阵列探测器,它主要由硅雪崩光电二极管阵列、读出电路芯片、微透镜阵列、半导体制冷器、引脚网格阵列壳体等元件组成。硅雪崩光电二极管焦平面阵列采用拉通型N+1-P-2-P+结构,工作在盖革模式下,通过Si片背面抛磨减薄及盲孔刻蚀技术,实现了纤薄光敏区的加工;读出电路采用主动模式淬灭设计,使电路单元的死时间控制在50 ns以内,并利用一种带相移技术的时间数字转换电路优化方案,在满足时间分辨率不大于2 ns的同时,降低了读出电路芯片的功耗。结果表明,在反向过偏电压14 V、工作温度-40 ℃的条件下,该探测器在850 nm的目标波长可实现20.7%的平均光子探测效率与0.59 kHz的平均暗计数率,时间分辨率为1 ns,有效像元率优于97%。该研究为纤薄型背进光Si基激光焦平面探测器的研制提供了参考。
    Abstract: A 32×32 Geiger-mode silicon laser focal plane array detector was developed for the long-distance or weak-laser detection of the 3-D imaging system using the wavelength in range of 350 nm~1100 nm. This detector is mainly composed of silicon avalanche photodiode array, readout circuit chips, microlens arrays, semiconductor refrigerators, and pin-grid array shells. The silicon avalanche photodiode focal plane arrays, adopts the structure of pull through N+1-P-2-P+ and works at the Geiger mode. The processing of thin photosensitive areas has been achieved through Si wafer back polishing and blind hole etching technology. An active-quenching-mode design was adopted to control the dead time of the circuit unit within 50 ns. An optimized time-to-digital converter circuit scheme with phase shift technology was used to achieve a time resolution within 2 ns while reducing the power consumption of the readout circuit chip. The results show that under the conditions of reverse bias voltage of 14 V and operating temperature of -40 ℃, the detector can achieve an average photon detection efficiency of 20.7% and an average dark counting rate of 0.59 kHz at the target wavelength of 850 nm, with a time resolution of 1 ns and an effective pixel rate better than 97%. This study provides a reference for the development of thin-type back-illuminated silicon-based laser focal plane detectors.
  • 图  1   盖革模式硅激光焦平面探测器组成元件示意图

    Figure  1.   Schematic diagram of Geiger-mode silicon laser focal plane detector module

    图  2   a—GM-APDA光敏芯片结构示意图b,c—进光孔共聚焦显微镜照片

    Figure  2.   a—structure diagram of the GM-APDA photosensitive chip b, c—confocal microscope photograph of the li-ght entry hole

    图  3   a—高精度时间数字转换电路结构图b—GM-APD单元主动淬灭电路设计框图c—GM-APDA单元主动淬灭电路时序图

    Figure  3.   a—structure diagram of the high precision time digital conversion circuit b—block diagram of the GM-APD unit active quenching circuit design c—timing diagram of the GM-APDA unit active quenching circuit

    图  4   GM-APDA光敏芯片击穿电压与像元坏点分布测试图

    Figure  4.   Test diagram of the breakdown voltage and the dead pixels distribution of GM-APDA photosensitive chip

    图  5   a—微透镜阵列表面形貌及尺寸分布测试图b—微透镜阵列安装示意图c—盖革模式硅激光焦平面探测器组件实物图

    Figure  5.   a—test diagram of the surface morphology and the size distribution of microlens array b—installation diag-ram of microlens array c—photograph of the Geiger-mode silicon laser focal plane detector module

    图  6   a—盖革模式硅激光焦平面探测器组件测试系统示意图b,c—反向偏置电压过偏14 V时盖革模式硅激光焦平面探测器组件的PDE/DCR及盲元分布图

    Figure  6.   a—diagram of the Geiger-mode silicon laser focal plane detector module test system b, c—test diagram of the PDE/DCR and the dead pixels distribution of Geiger-mode silicon laser focal plane detector module when the reverse bias voltage is overoffset by 14 V

  • [1]

    EISAMAN M D, FAN J, MIGDALL A, et al. Invited review article: Single-photon sources and detectors[J]. Review of Scientific Instruments, 2011, 82(7): 071101. DOI: 10.1063/1.3610677

    [2]

    TOSI A, MORA D A, ZAPPA F. All silicon 1.55 μm high-resolution photon counting and timing[J]. IEEE Photonics Technology Letters, 2008, 20(23): 1956-1958. DOI: 10.1109/LPT.2008.2005788

    [3]

    ALBOTA M A, HEINRICHS R M, KOCHER D G, et al. Three-dimensional imaging laser radar with photon-counting avalanche photodiode array and microchip laser[J]. Applied Optics, 2002, 41(35): 7671-7678.

    [4]

    MARINOL R M, STEPHENS T, HATCH R E, et al. A compact 3D imaging laser radar system using Geiger-mode APD arrays: System and measurements[J]. Proceedings of the SPIE, 2003, 5086: 1-15. DOI: 10.1117/12.501581

    [5]

    KEAST C, AULL B, BURNS J, et al. Three-dimensional integration technology for advanced focal planes[J]. MRS Online Proceeding Library Archive, 2008, 1112: 204-206.

    [6]

    MARINOL R M, RICHARDSON J, GARNIER R, et al. Photon-counting lidar for aerosol detection and 3-D imaging[J]. Proceedings of the SPIE, 2009, 7323: 73230H.

    [7]

    ROGER S, HOWARD B S. Eye-safe laser radar 3-D imaging[J]. Proceedings of the SPIE, 2001, 5412: 46-56.

    [8]

    ALBOTA M A, AULL B F, FOUCHE D G, et al. Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays[J]. Lincoln Laboratory Journal, 2002, 13(2): 351-370.

    [9]

    ITZLER M A, ENTWISTLE M, OWENS M, et al. Comparison of 32×128 and 32×32 Geiger-mode APD FPAs for single photon 3D LADAR imaging[J]. Proceedings of the SPIE, 2011, 8033: 80330G. DOI: 10.1117/12.884693

    [10]

    AULL B F, SCHUETTE D R, YOUNG D J, et al. A study of crosstalk in a 256×256 photon-counting imager based on silicon Geiger-mode avalanche photodiodes[J]. IEEE Sensors Journal, 2015, 15(4): 2123-2132. DOI: 10.1109/JSEN.2014.2368456

    [11]

    GHIONI M, GULINATTI A, MACCAGNANI P, et al. Planar silicon SPADs with 200 μm diameter and 35 ps photon timing resolution[J]. Proceedings of the SPIE, 2006, 6372: 63720R. DOI: 10.1117/12.685834

    [12]

    JACKSON J C, MORRISO A P, PHELAN D, et al. A novel silicon Geiger-mode avalanche photodiode[C]//Digest. International Electron Devices Meeting. San Francisco, USA: IEEE, 2002: 797-800.

    [13]

    SCIACCA E, GIUDICE A C, SANFILIPPO D, et al. Silicon planar technology for single-photon optical detectors[J]. IEEE Transactions on Electron Devices, 2003, 50(4): 918-925. DOI: 10.1109/TED.2003.812095

    [14]

    ROCHAS A, GANI M, FURRER B, et al. Single photon detector fabricated in a complementary metal-oxide-semiconductor high-voltage technology[J]. Review of Scientific Instruments, 2003, 74(7): 3263-3270. DOI: 10.1063/1.1584083

    [15]

    FINKELSTEIN H, HSU M J, ESENER S C. STI-bounded single-photon avalanche diode in a deep-submicrometer CMOS technology[J]. IEEE Electron Device Letters, 2006, 27(11): 887-889. DOI: 10.1109/LED.2006.883560

    [16]

    AULL B F, LOOMIS A H, YOUNG D J, et al. Geiger-mode avalanche photodiodes for three-dimensional imaging[J]. Lincoln Laboratory Journal, 2002, 13(2): 335-349.

    [17]

    AULL B, BURNS J, CHEN C, et al. Laser radar imager based on 3D integration of Geiger-mode avalanche photodiodes with two SOI timing circuit layers[C]//2006 IEEE International Solid State Circuits Conference-Digest of Technical Papers. San Francisco, USA: IEEE, 2006: 1179-1188.

    [18]

    ZAPPA F, GULINATTI A, MAcCAGNANI P, et al. SPADA: Single-photon avalanche diode arrays[J]. IEEE Photonics Technology Letters, 2005, 17(3): 657-659. DOI: 10.1109/LPT.2004.840920

    [19] 赵洪利, 范有臣, 孙华燕, 等. 基于盖革模式APD阵列的非扫描激光三维成像雷达研究综述[J]. 激光与红外, 2013, 43(10): 1083-1088. DOI: 10.3969/j.issn.1001-5078.2013.10.01

    ZHAO H L, FAN Y Ch, SUN H Y, et al. Review about 3D laser radar system based on Geiger-mode APD arrays[J]. Laser & Infrared, 2013, 43(10): 1083-1088(in Chinese). DOI: 10.3969/j.issn.1001-5078.2013.10.01

    [20] 陈德章, 张华, 冷杰, 等. 基于APD面阵探测器的非扫描激光主动成像雷达[J]. 激光技术, 2017, 41(6): 775-778.

    CHEN D Zh, ZHANG H, LENG J, et al. Non-scanning active imaging lidar based on APD planar array detector[J]. Laser Technology, 2017, 41(6): 775-778 (in Chinese).

    [21] 周建, 周易, 倪歆玥, 等. 偏振集成红外光电探测器研究进展与应用[J]. 光电工程, 2023, 50(5): 230010.

    ZHOU J, ZHOU Y, NI X Y, et al. Research progress and applications of polarization integrated infrared photodetector[J]. Opto-Electronic Engineering, 2023, 50(5): 230010.

    [22] 李兵, 杨赟秀, 李潇, 等. APD阵列及其成像激光雷达系统的研究进展[J]. 激光技术, 2023, 47(3): 310-316.

    LI B, YANG Y X, LI X, et al. Research progress of APD array and its imaging LiDAR system[J]. Laser Technology, 2023, 47(3): 310-316 (in Chinese).

  • 期刊类型引用(1)

    1. 李喆,郝昕,王江,邓世杰. 532nm硅基单光子雪崩管制备及其电压调控效应. 四川大学学报(自然科学版). 2024(06): 23-29 . 百度学术

    其他类型引用(0)

图(6)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  7
  • PDF下载量:  35
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-08-28
  • 修回日期:  2023-11-16
  • 发布日期:  2024-09-24

目录

    /

    返回文章
    返回