应用于柔性电子领域的激光剥离技术进展
Development of laser lift-off technology used in the field of flexible electronics
-
摘要: 柔性电子是可穿戴设备、物联网等应用发展的重要研究方向。激光剥离技术是一种利用激光能量来分离玻璃基板与柔性衬底的技术,具有作用光波长可选、作用时间短、热影响区域小的优点,是目前实现柔性电子器件的最重要技术之一。介绍了激光剥离的主要技术特点,分析其在不同的柔性电子领域的应用,讨论了应用过程中的主要工艺和作用,并总结了激光剥离技术未来的发展趋势。激光剥离技术的快速发展,会对柔性电子行业的研究和发展形成强力支持。Abstract: Flexible electronic is an important research direction for the development of wearable equipment, internet of things and other applications. Laser lift-off technique is a technology to separate glass substrates from flexible substrates, and one of the important technologies to realize flexible electronic devices at present with advantages of optional light wavelength, short action time, and small heat effect areas.In this paper, the main technical characteristics of laser lift-off were introduced, its application in different flexible electronic fields was analyzed, the main processes and functions in the application process were discussed. Finally, the future development trend of laser lift-off technology was summarized.The rapid development of laser lift-off technologywill form a strong support for the research and development of flexible electronics industry.
-
Key words:
- laser technique /
- laser application /
- flexible electronics /
- laser lift-off /
- flexible substrate
-
图 1 激光剥离装置示意图[20]
图 2 有限元模拟结果[24]
图 3 激光剥离柔性存储器示意图[34]
-
[1] TAN H B. Flexible display technology[J]. Recording Media Technology, 2010(5):61-64(in Chinese). [2] LIU X, LÜ Y J, WANG L F, et al. Research progress of stretchable and flexible electronic Technology[J]. Semiconductor Technology, 2015, 40(3):161-166(in Chinese). [3] DELMDAHL R. The excimer laser:precision engineering[J]. Nature Photonics, 2010, 4(5):286-286. doi: 10.1038/nphoton.2010.106 [4] HSIEH K L, CHENG K N, WANG P F, et al. P-50:Application of high temperature debonding layer in the fabrication of flexible AMOLED displays[J]. Sid Symposium Digest of Technical Papers, 2016, 47(1):1324-1327. doi: 10.1002/sdtp.10922 [5] LÜ Sh G, DENG W, X F. Royole echnology:leading the global "flexibledisplay"[J].Invention & Innovation, 2016(9):36-37(in Chin-ese). [6] ZHANG X. Laser technology in flexible displays[J]. Light Electrical and Mechanical Information, 2008, 25(11):11-14(in Chinese). [7] LI T H. Brief introduction to key issues of flexible display technology[J].Video Engineering, 2009, 33(8):25-29(in Chinese). [8] YANG Zh, HU W B. Developments of microcapsule electrophoretic display[J].Vacuum Electronics Technology, 2012(6):59-64(in Chinese). [9] CHEN G K J, CHEN J. Handbook of visual display technology[M].Berlin, Germany:Springer International Publishing, 2016:1359-1376. [10] LI Ch, HUANG G M, DUAN L, et al.Recent advances in organic light-emitting diodes for flexible applications[J]. Material China, 2016, 35(2):101-107. [11] TANG C W, VANSLYKE S A. Organic electroluminescent diodes[J]. Applied Physics Letters, 1987, 51(12):913-915. doi: 10.1063/1.98799 [12] BOLAND J J. Flexible electronics:within touch of artificial skin[J]. Nature Materials, 2010, 9(10):790-792. doi: 10.1038/nmat2861 [13] GATES B D. Flexible Electronics[J]. Science, 2009, 323(5921):1566-1567. doi: 10.1126/science.1171230 [14] NOMURA K, TAKAGI A, KAMIYA T, et al. Amorphous oxide semiconductors for high-performance flexible thin-film transistors[J]. Japanese Journal of Applied Physics, 2006, 45(5):4303-4308. [15] CHIRILA A, BUECHELER S, PIANEZZI F, et al. Highly efficient Cu (In, Ga) Se2 solar cells grown on flexible polymer films[J]. Nature Materials, 2011, 10(11):857-861. doi: 10.1038/nmat3122 [16] YOO J S, JUNG S H, KIM Y C, et al. Highly flexible AM-OLED display with integrated gate driver using amorphous silicon TFT on ultrathin metal foil[J]. Journal of Display Technology, 2010, 6(11):565-570. doi: 10.1109/JDT.2010.2048998 [17] CRAWFORD G P. Flexible flat panel displays[M]. Rhode Island, USA:John Wiley & Sons, 2005:2-6. [18] KIM K, KIM S Y, LEE J L. Flexible organic light-emitting diodes using a laser lift-off method[J]. Journal of Materials Chemistry, 2014, C2(12):2144-2149. [19] TSUJIMURA T, FUKAWA J, ENDOH K, et al. Development of flexible organic light-emitting diode on barrier film and roll-to-roll manufacturing[J]. Journal of the Society for Information Display, 2014, 22(8):412-418. doi: 10.1002/jsid.261 [20] KOEZUKA J, IDOJIRI S, SHIMA Y, et al. 24-1:Invited paper:flexible OLED display using c-axis-aligned-crystal/cloud-aligned composite oxide semiconductor technology and laser separation technology[J]. Sid Symposium Digest of Technical Papers, 2017, 48(1):329-332. doi: 10.1002/sdtp.11641 [21] SELVAN K V, ALI M S M. Micro-scale energy harvesting devices:Review of methodological performances in the last decade[J]. Renewable and Sustainable Energy Reviews, 2016, 54:1035-1047. doi: 10.1016/j.rser.2015.10.046 [22] MITCHESON P D, YEATMAN E M, RAO G K, et al. Energy harvesting from human and machine motion for wireless electronic devices[J]. Proceedings of the IEEE, 2008, 96(9):1457-1486. doi: 10.1109/JPROC.2008.927494 [23] ERICKSON E M, MARKEVICH E, SALITRA G, et al. Development of advanced rechargeable batteries:a continuous challenge in the choice of suitable electrolyte solutions[J]. Journal of The Electrochemical Society, 2015, 162(14):A2424-A2438. doi: 10.1149/2.0051514jes [24] KIM S J, LEE H E, CHOI H, et al. High-performance flexible thermoelectric power generator using laser multiscanning lift-off process[J]. American Chemical Society Nano, 2016, 10(12):10851-10857. [25] JOE D J, KIM S, PARK J H, et al. Laser-material interactions for flexible applications[J]. Advanced Materials, 2017, 29(26):1606586. doi: 10.1002/adma.v29.26 [26] PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates.[J]. Advanced Materials, 2014, 26(16):2514-2520. doi: 10.1002/adma.v26.16 [27] ROSENBERG I, PERLIN K. The UnMousePad:an interpolating multi-touch force-sensing input pad[J].ACM Transactions on Graphics 2009, 28(3):65. [28] DIETZ P, LEIGH D. DiamondTouch: a multi-user touch technology[C]//Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology.New York, USA: Association for Computing Machinery, 2001: 219-226. [29] NOH M S, KIM S, HWANG D K, et al. Self-powered flexible touch sensors based on PZT thin films using laser lift-off[J]. Sensors and Actuators, 2017, A261:288-294. [30] LI W. Preparation and properties of high d33 PLZT/PVDF piezoelectric composites[D].Zhenjiang: Jiangsu University, 2016: 4-10(in Chinese). [31] JI Y, ZEIGLER D F, LEE D S, et al. Flexible and twistable non-volatile memory cell array with all-organic one diode-one resistor architecture[J]. Nature Communications, 2013, 4(4):2707(2013). [32] KIM S J, LEE J S. Flexible organic transistor memory devices[J]. Nano Letters, 2010, 10(8):2884-2890. doi: 10.1021/nl1009662 [33] MENARD E, LEE K J, KHANG D Y, et al. A printable form of silicon for high performance thin film transistors on plastic substrates[J]. Applied Physics Letters, 2004, 84(26):5398-5400. doi: 10.1063/1.1767591 [34] KIM S, SON J H, LEE S H, et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off[J]. Advanced Materials, 2014, 26(44):7480-7487. doi: 10.1002/adma.201402472