-
如图 1所示,由激光器辐射出的光信号可表示为:
$ {E_{\rm{c}}}(t) = {E_{\rm{c}}}{\rm{exp}}({\rm{j}}2{\rm{ {\rm{ \mathsf{ π} }} }}{f_{\rm{c}}}t) $
(1) 式中,Ec和fc分别表示载波信号的幅度和频率。系统接收到的微波射频信号为:Vs(t)=Vscos(2πfst),其中Vs是射频信号的幅度,fs是射频信号的频率。通过双驱动马赫-曾德尔调制器(dual-driven Mach-Zehnder modulator,D-MZM)对光载波进行调制。调整该调制器中的直流偏置点,可以实现单边带(single sideband,SSB)调制。经过Jacobi-Anger展开,输出信号的表达式为:
$ \begin{array}{c} {E_1}\left( t \right) = \left( {\frac{{{E_{\rm{c}}}}}{2}} \right){\rm{ }}\{ {{\rm{J}}_0}\left( {{m_{\rm{s}}}} \right)[{\rm{cos}}\left( {2{\rm{ {\rm{ \mathsf{ π} }} }}{f_{\rm{c}}}t} \right) - {\rm{sin}}\left( {2{\rm{ {\rm{ \mathsf{ π} }} }}{f_{\rm{c}}}t)} \right] + \\ 2{{\rm{J}}_1}({m_{\rm{s}}}){\rm{cos}}\left[ {2{\rm{ {\rm{ \mathsf{ π} }} }}\left( {{f_{\rm{c}}} + {f_{\rm{s}}}} \right)} \right] \end{array} $
(2) 式中, ms=πVs/Vπ是D-MZM的调制系数,Vπ是调制器的半波电压,J1和J0代表贝塞尔展开的系数。在小信号条件下,1阶以上的边带可以被忽略。从(2)式中可以看出,经过SSB调制,载波和+1阶边带被保留下来。
光纤布喇格光栅(fiber Bragg grating,FBG)的中心频率与载波信号的频率相同。调制后的信号经过环形器和FBG之后,由于FBG本身的滤波特性,将载波信号反射回去,而+1阶信号通过。由此,载波信号进入到下支路,+1阶信号进入上支路。在上下两支路中,各有一个由双平行马赫-曾德尔调制器(dual-parallel Mach-Zehnder modulator,DP-MZM)组成的光频梳(optical frequency comb,OFC)产生器(OFC generator 1和OFC generator 2)[15]。OFC1由本振信号VLO1(t)= Vm, 1cos(2πfLO1t)驱动,OFC2由另一个本振信号VLO2(t)= Vm, 2cos(2πfLO2t)驱动。其中,Vm, 1和Vm, 2分别表示两个本振信号的幅度,fLO1和fLO2表示两个本振信号的频率。
上支路产生的OFC1中的每一根频梳可表示为:
$ {f_{{\rm{OF}}{{\rm{C}}_{\rm{1}}}}} = {f_{\rm{c}}} + {f_{\rm{s}}} + i{f_{{\rm{L}}{{\rm{O}}_{\rm{1}}}}} $
(3) 式中,参量i(1≤i≤n)表示各个频梳(光边带)相对于载波的阶数,n是产生出光频梳的最高阶数。与此相同,下支路同样也产生出光频梳信号,各个频梳可表示为:
$ {f_{{\rm{OF}}{{\rm{C}}_{\rm{2}}}}} = {f_{\rm{c}}} + i{f_{{\rm{L}}{{\rm{O}}_{\rm{2}}}}} $
(4) 两路信号在3dB耦合器的作用下,耦合成一路信号,频谱示意图如图 2所示,其中fout, i是第i对光边带之间的频率差。
为了保证每对频梳能够准确地落入波分复用器中的各个滤波器的频带内,fLO1和fLO2都需要进行相应的调整。满足以下条件:
$ n \le {\rm{ }}\frac{{{f_{\rm{s}}}}}{{\left| {{f_{{\rm{L}}{{\rm{O}}_{\rm{2}}}}} - {f_{{\rm{L}}{{\rm{O}}_{\rm{1}}}}}} \right|}}和 n \le \frac{{{d_{{\rm{BW}}}} - {f_{\rm{s}}}}}{{\left| {{f_{{\rm{L}}{{\rm{O}}_{\rm{2}}}}} - {f_{{\rm{L}}{{\rm{O}}_{\rm{1}}}}}} \right|}} $
(5) 式中,dBW是波分复用器(wavelength division multiplexing,WDM)的带宽。滤出的各对频梳在光电探测器(photo-detector,PD)的作用下,得到相应的频率,从而达到变频的目的:
$ {f_{{\rm{out}}, i}} = {f_{\rm{s}}} + i\left| {{f_{{\rm{L}}{{\rm{O}}_1}}} - {f_{{\rm{L}}{{\rm{O}}_2}}}} \right| $
(6)
基于双光频梳的多频段变频方法
Multiband frequency conversion method based on double optical frequency combs
-
摘要: 为了探寻一种基于光频梳的灵活、高效的多频段变频方案,采用一个双驱动马赫-曾德尔调制器(D-MZM)和两个双平行马赫-曾德尔调制器(DP-MZM)组成的系统,由接收到的射频信号驱动D-MZM,进行单边带调制,进而得到一个载波和+1阶边带。利用两个DP-MZM分别作为两个光频梳产生器,产生两个相位相干、中心频率不同的光频梳,并进行了理论分析和实验验证;同时还研究了直流偏置点漂移对系统变频效率的影响。结果表明,所提出的变频系统,可将Ku波段的15GHz微波信号转化成3GHz,7GHz,11GHz,19GHz,23GHz和27GHz的信号;输出的微波信号信噪比可达28.82dB~29.99dB;直流偏置点的漂移量在-10%~50%范围内影响明显。该方法可为卫星通信系统提供多频段变频功能,从而满足多频段通信需求。Abstract: In order to explore a flexible and efficient multiband frequency conversion scheme based on optical frequency comb, a system consisting of one dual-drive Mach-Zehnder modulator (D-MZM) and two double-parallel Mach-Zehnder modulators (DP-MZM) was used. D-MZM was drived by the received radio frequency signal, single side band modulation was carried out and then one carrier and +1 order side band were obtained. Two DP-MZMs were used as two optical comb generators, and two optical frequency combs with different phase coherence and different center frequencies were produced. The influence of DC bias point drift on frequency conversion efficiency of the system was also studied. After theoretical analysis and experimental verification, the results show that the proposed frequency conversion system can convert 15GHz microwave signals in Ku band into 3GHz, 7GHz, 11GHz, 19GHz, 23GHz and 27GHz. The signal-to-noise ratio of output microwave signal can reach 28.82dB~29.99dB. The drift of DC bias point is within the range of -10% to 50%. The influence is obvious. This method can provide multiband frequency conversion for a satellite communication system to meet requirements of multiband communication.
-
[1] PANAGOPOULOS A D, ARAPOGLOU P D M, COTTIS P G. Satellite communications at Ku, Ka, and V bands:propagation impairments and mitigation techniques[J]. IEEE Communication Surveys Tutorials, 2004, 6(3):2-14. doi: 10.1109/COMST.2004.5342290 [2] QIU Q, LONG Z L, TIAN J, et al. Microwave signal transmission over space optical communication system[J].Laser Technology, 2005, 29(1):43-45(in Chinese). [3] GOPALAKRISHNAN G K, BURNS W K, BULMER C H.Microwave-optical mixing in LiNbO3 modulators[J]. IEEE Transactions on Microwave Theory & Techniques, 1993, 41(12):2383-2391. [4] YAO J P. Microwave photonics[J].Journal of Lightwave Technology, 2009, 27(3):314-335. doi: 10.1109/JLT.2008.2009551 [5] CHANG W S C. RF photonic technology in optical fiber links[M]. Cambridge, UK:Cambridge University Press, 2002:235-248. [6] GOPALAKRISHNAN G K, BURNS W K, BULMER C H. Microwave-optical mixing in LiNbO3 modulators[J]. IEEE Transactions of Microwave Theory Technology, 1993, 41(12):2383-2391. doi: 10.1109/22.260732 [7] JUODAWLKIS P, HARGREAVES J, YOUNGER R, et al. Optical down-sampling of wide-band microwave signals[J]. Journal of Lightwave Technology, 2003, 21(12):3116-3124. doi: 10.1109/JLT.2003.821736 [8] TANG Zh Zh, ZHANG F Zh, PAN Sh L. Photonic microwave downconverter based on an optoelectronic oscillator using a single dual-drive Mach-Zehnder modulator[J]. Optics Express, 2014, 22(1):305-310. doi: 10.1364/OE.22.000305 [9] ZHANG W, WEN A J, GAO Y Sh, et al. Microwave photonic frequency conversion with high conversion efficiency and elimination of dispersion-induced power fading[J]. Photonics Journal, 2016, 8(3):5500909. [10] TANG Z, PAN S. Image-reject mixer with large suppression of mixing spurs based on a photonic microwave phase shifter[J]. Journal of Lightwave Technology, 2016, 34(20):4729-4735. doi: 10.1109/JLT.2016.2550180 [11] LI P X, PAN W, ZOU X H, et al. High-efficiency photonic microwave down-conversion with full-frequency-range coverage[J]. Photonics Journal, 2015, 7(4):5500907. [12] CODDINGTON I, SWANN W C, NEWBURY N R. Coherent multi-heterodyne spectroscopy using stabilized optical frequency combs[J]. Physics Review Letters, 2008, 100(1):013902. doi: 10.1103/PhysRevLett.100.013902 [13] FERDOUS F, LEAIRD D E, HUANG C B, et al. Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization[J]. Optics Letters, 2009, 34(24):3875-3877. doi: 10.1364/OL.34.003875 [14] YANG X, XU K, YIN J, et al. Optical frequency comb based multi-band microwave frequency conversion for satellite applications[J]. Optics Express, 2014, 22(1):869-877. doi: 10.1364/OE.22.000869 [15] WANG Q, HUO L, XING Y F, et al. Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator[J]. Optics Letters, 2014, 39(10):3050-3053. doi: 10.1364/OL.39.003050