-
考虑厄米-高斯光束在光折变晶体中沿z轴传输,其偏振沿x方向;假定光束只在x方向衍射,晶体光轴和外加电场均沿x方向。为了便于数值分析,取归一化的坐标参量s=x/x0,ξ=z/(kx02)。其中,x0是任意空间宽度,k=k0ne=(2π/λ0)ne,λ0是自由空间波长,ne是未受扰动的非寻常光折射率。光波传输的归一化方程可以表示为:
$ {\rm{i}}\frac{{\partial U}}{{\partial \xi }} + \frac{1}{2}\;\frac{{{\partial ^2}U}}{{\partial {s^2}}} - \beta \frac{U}{{1 + {{\left| U \right|}^2}}} = 0 $
(1) 式中,U(s, ξ)是归一化光波包络,非线性系数β=(k0x0)2(ne4r33/2)E0,r33是电光系数,E0是外加电场强度。入射面处的厄米-高斯光束可以表示为:
$ U\left( {s, 0} \right) = {H_n}(\sqrt 2 s){\rm{exp}}( - {s^2}) $
(2) 式中,Hn是厄米多项式,n表示厄米多项式的阶数。如果x0=w0=50μm(w0表示高斯光束的光斑大小),λ0=0.5μm,相应的高斯光束的瑞利距离ZR=πw02/λ0=15.7mm。下面基于(1)式和(2)式数值分析各阶厄米-高斯光束的传输特性。
-
当厄米多项式H0=1时,(2)式即退化为基模高斯光束的表达式。如果外加电场为零,则非线性参量β=0,可得到图 1a所示结果,图中横纵坐标均是归一化的无量纲坐标。ξ=1对应实际传输距离大约是70mm,可以看到超过瑞利距离(约ξ=0.2),由于光束的衍射效应,高斯光束的光斑能量逐渐弥散。为了抑制光束的这种衍射效应,增加外加电场强度,当非线性系数β=5.5,基本可以抑制光束的衍射,形成呼吸模式的高斯孤子,为了更清楚看到其呼吸模式,可以将传输距离增加到ξ=6,如图 1b和图 1c所示。
当厄米多项式取${{\rm{H}}_1} = 2\sqrt 2 s $时,厄米-高斯光束在入射面呈现两个对称的光场分量。如果没有非线性的作用,这两个光场分量会由于衍射效应而迅速弥散,为了抑制光束的衍射效应,取非线性参量β=11。图 2中分别给出了1阶厄米-高斯光束在3维空间的传输图像(见图 2a)、2维投影(见图 2b)和不同传输距离的强度包络(见图 2c)。可以看到,随着传输距离的增加,1阶厄米-高斯光束的两个光场分量之间相互分离的距离也逐渐加大,类似于两个反相位孤子的相互排斥作用;在传输过程中,光折变非线性虽然基本抑制了光束的衍射,但是每个光场分量的振幅和基模高斯光束一样,呈现一定的起伏,即呼吸特性。
如果加大非线性即加大外加电场,两个光场分量之间的分离距离可以明显减小,但是相应的每个光场分量的起伏效应会显著加大,如图 3所示。通过改变外加电场的大小可以灵活调节两个光场分量之间的距离,从而可以控制出射面某一点处光信号的有无,这在光开关领域有一定的应用前景。
同样,当厄米多项式取H2=8s2 -2时,(2)式就是2阶厄米-高斯光束的表达式。此时,在初始入射面,2阶厄米-高斯光束呈现对称的3个光场分量,取合适的外加电场强度如β=15,同样可以形成呼吸模式的孤子,中间光场分量直线传输,两侧的光场分量彼此分离,而且分离的距离随着传输距离的加大而增加;当外加电场强度加大时,比如β=25,两侧光场分量之间的分离距离明显减小,但是3个光场分量振幅的起伏效应会更加明显(见图 4)。
Figure 4. Propagation of the second-order Hermite-Gaussian beam under different nonlinear conditions
当厄米多项式取更高阶形式,如${{\rm{H}}_3} = 16\sqrt 2 {s^2} - 12\sqrt 2 s $时,厄米-高斯光束在初始入射面呈现4个光场分量,此时在合适外加电场强度下,同样可以形成呼吸模式的孤子(见图 5),而且,每两个对称光场分量之间相互分离,分离的距离随着传输距离的增加而加大(见图 5a),随着外加电场强度的增加而减小(见图 5b), 如果改变光束的初始入射位置,其传输特性不变(见图 5c)。同样改变光束的初始入射角度,其传输特性也没有变化。
光波传输的归一化方程(1)式在2维情况时可以表示为[15]:
$ {\rm{i}}\frac{{\partial U}}{{\partial \xi }} + \frac{1}{2}\;\frac{{{\partial ^2}U}}{{\partial {s_x}^2}} + \frac{1}{2}\;\frac{{{\partial ^2}U}}{{\partial {s_y}^2}} - \beta \frac{U}{{1 + {{\left| U \right|}^2}}} = 0 $
(3) 式中,sx=x/x0,sy=y/x0,分别是x方向和y方向的归一化坐标。其它参量的意义和(1)式相同。这里以2阶厄米-高斯光束为例,2维厄米-高斯光束表示为U(sx, sy, 0)=(8sx2-2)(8sy2-2)exp(-sx2-sy2),同样取非线性参量β=15,2维厄米-高斯光束在ξ=0,ξ=1.5和ξ=3处的横截面强度分布如图 6所示。可以看到,在合适非线性条件下,2阶厄米-高斯光束的每一个光场分量都以呼吸模式的孤子形式传输,而且随着传输距离的加大,各个光场分量之间的距离会逐渐增加。
厄米-高斯光束在饱和非线性介质中的传输特性
Propagation characteristics of Hermite-Gaussian beam in saturable nonlinear media
-
摘要: 为了研究厄米-高斯光束在光折变饱和非线性介质中的传输特性,采用有限差分方法数值求解了光波演化方程,理论分析了厄米-高斯光束的传输特性。结果表明,1维1阶、2阶和3阶厄米-高斯光束在光折变非线性介质中传输时,在合适的非线性条件下,均可以形成呼吸模式的孤子;随着非线性的加大,厄米-高斯光束的光场分量之间的相互分离趋势将逐渐变弱,同时,每个光场分量的振幅起伏效应会更加明显;改变厄米-高斯光束的入射位置、入射角度对其传输特性没有影响;2维厄米-高斯光束的传输特性和1维情况是类似的。厄米-高斯光束的这些特性在光开关领域有一定的应用前景。Abstract: In order to study propagation properties of Hermite-Gaussian beams in photorefractive saturable nonlinear media, finite difference method was used to solve the evolution equation of light wave numerically and analyze the propagation properties of Hermite-Gaussian beams theoretically. The results show that, under suitable nonlinear conditions, 1-D Hermite-Gaussian beams of 1-order, 2-order and 3-order can form the solitons in respiratory mode during the propagation in photorefractive nonlinear media. With the increase of nonlinearity, the separation tendency among light field components of Hermite-Gaussian beams would become weaker. At the same time, the amplitude fluctuation effect of each light field component would be more obvious. The changes of incident position and incident angle of Hermite-Gaussian beams have no influence on its propagation characteristics. The transmission characteristics of 2-D Hermite-Gaussian beams are similar to those of 1-D. These properties of Hermite-Gaussian beams have certain application prospects in the field of optical switching.
-
Key words:
- nonlinear optics /
- Hermite-Gaussian beam /
- photorefractive effect /
- spatial solitons
-
-
[1] CASPERSON L W, TOVAR A A. Hermite-sinusoidal-Gaussian beams in complex optical systems[J]. Journal of the Optical Society of America, 1998, A15(4):954-961. [2] TOVAR A A, CASPERSON L W. Production and propagation of Hermite-sinusoidal-Gaussian laser beams[J]. Journal of the Optical Society of America, 1998, A15(9):2425-2432. [3] ZHAO D, MAO H, LIU H. Propagation of off-axial Hermite cosh-Gaussian laser beams[J]. Journal of Optics, 2004, A6(1):77-83. [4] YU S, GUO H, FU X, et al. Propagation properties of elegant Hermite-cosh-Gaussian laser beams[J]. Optics Communications, 2002, 204(1/6):59-66. [5] ZHAO Q, HAO H Y, FAN H Y, et al. Focusing characteristics of partially coherent cosh-Gaussian beams propagating through turbulent atmosphere[J]. Laser Technology, 2016, 40(5):750-755(in Chinese). [6] YOKOTA M, KUDOU T, FUKUMITSU O. High-frequency scattering of a Hermite-Gaussian beam by a perfectly conducting cylinder[J]. Electronics Letters, 1987, 23(4):174-175. doi: 10.1049/el:19870123 [7] YOKOTA M, HE S, TAKENAKA T. Scattering of a Hermite-Gaussian beam field by a chiral sphere[J]. Journal of Optical Society American, 2001, A18(7):1681-1689. [8] QU T, WU Zh S, SHANG Q Ch, et al. Far-field scattering of a chiral sphere located in a Hermite-Gaussian beam[J]. Acta Optica Sinica, 2016, 36(4):0429001(in Chinese). doi: 10.3788/AOS [9] JI X L, CHEN X W, LÜ B D. Spreading and directionality of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America, 2008, A25(1):21-28. [10] JI X L, LI X Q. Effective radius of curvature of partially coherent Hermite-Gaussian beams propagating through atmospheric turbulence[J]. Journal of Optics, 2010, 12(3):035403. doi: 10.1088/2040-8978/12/3/035403 [11] HUANG Y P, GAO Z H, WANG F H, et al. The effective radius of curvature of partially coherent Hermite-Gaussian linear array beams passing through non-Kolmogorov turbulence[J]. Optics Communications, 2014, 315(19):130-137. [12] DENG D, ZHAO X, GUO Q, et al. Hermite-Gaussian breathers and solitons in strongly nonlocal nonlinear media[J]. Journal of the Optical Society of America, 2007, B24(9):2537-2544. [13] WANG Q, LI J Z. Elliptic Hermite-Gaussian soliton in anisotropic strong nonlocal media[J]. Optics Communications, 2016, 359:31-37. doi: 10.1016/j.optcom.2015.09.049 [14] ZHONG L H, YANG J, REN Z M, et al. Hermite-Gaussian stationary solutions in strongly nonlocal nonlinear optical media[J]. Optics Communications, 2017, 383:274-280. doi: 10.1016/j.optcom.2016.09.021 [15] LI Sh H, YANG Zh J, LU D Q, et al. Numerical study of Hermite-Gaussian beams in nonlocal thermal media[J]. Acta Physica Sinica, 2011, 60(2):024214(in Chinese). [16] KANG J, TANG Y L, LI D Y, et al. Propagation characteristics of Gaussian beam in logarithmically nonlinear media[J]. Laser Technology, 2000, 24(2):118-121(in Chinese). [17] SU Y L, JIANG Q C, JI X M, et al. The temperature properties of matching Gaussian beam in biased two-photon centrosymmetric paraelectric photorefractive crystals[J]. Optics and Quantum Electronics, 2012, 44(14):649-655. doi: 10.1007/s11082-012-9582-z