高级检索

ISSN1001-3806CN51-1125/TN 网站地图

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴快流CO2激光器翅片管换热器强化换热研究

岳建堡 李波 王海林 王智用 李杰雄

引用本文:
Citation:

轴快流CO2激光器翅片管换热器强化换热研究

    作者简介: 岳建堡(1991-), 男, 硕士研究生, 现主要从事轴快流激光器强化换热的研究.
    通讯作者: 李波, libohust@126.com
  • 基金项目:

    科技部中俄国际合作项目 2014DFR10870

    国家自然科学基金资助项目 61308045

  • 中图分类号: TN248.2

Study on heat transfer enhancement of fin-and-tube heat exchangers in fast-axial-flow CO2 lasers

    Corresponding author: LI Bo, libohust@126.com ;
  • CLC number: TN248.2

  • 摘要: 为了解决厚板切割领域中高功率轴快流CO2激光器翅片管换热器压力损失大、传热效率低的问题,采用计算流体力学软件ANSYS分析了3种涡流发生器的换热特性,并对换热性能更佳的梯形小翼涡流发生器的形状、长度、高度和安装角度进行优化设计;通过一个开环的风洞实验平台验证了数值模拟数据的可靠性。结果表明,长度11mm、高度2.6mm的梯形小翼涡流发生器采用30°迎角渐缩方式布置时换热性能最佳,在雷诺数为600~1600范围内,和没有安装涡流发生器相比,梯形小翼涡流发生器的努塞尔数Nu提高了8%~22%,摩擦因子上升了16%~27%;8h稳定输出功率4216W,比额定输出功率高出5.4%。该研究提高了CP4000系列激光器的厚板切割能力。
  • Figure 1.  Internal structure of CP4000 series axial-fast-flow CO2 laser

    Figure 2.  Sketch of numerical simulation zone

    Figure 3.  Relationship of Nu, f and Re of three vortex generators

    Figure 4.  Vortex strength of three vortex generators

    Figure 5.  Temperature contours of three vortex generators

    Figure 6.  Relationship between η and Re of three vortex generators

    Figure 7.  Relationship of Nu, f and Re of three vortex generators with different angles

    Figure 8.  Relationship of η and Re of three vortex generators with different angles

    Figure 9.  Relationship of Nu, f and Re of three vortex generators with different lengths

    Figure 10.  Relationship of η and Re of three vortex generators with different lengths

    Figure 11.  Relationship of Nu, f and Re of three vortex generators with different heights

    Figure 12.  Relationship of η and Re of three vortex generators with different heights

    Figure 13.  Sketch of experiment system

    Figure 14.  Relationship of Nu, f and Re of numerical simulations and experimental results

    Figure 15.  Experiment of two kinds of heat exchanger a—no vortex generators b—trapezium vortex generators

    Table 1.  Record of laser output

    time laser power/W water temp/℃ gas flow rate/(L·h-1) laser pressure/Pa
    8:00 4216 27.7 64 10850
    8:30 4221 27.5 64 10877
    9:00 4219 27.6 64 10904
    9:30 4219 27.4 64 10891
    10:00 4218 27.2 64 10877
    10:30 4215 27.3 64 10824
    11:00 4214 27.7 64 10864
    11:30 4216 27.8 64 10904
    12:00 4217 27.6 64 10904
    12:30 4219 27.6 64 10864
    13:00 4217 27.8 64 10864
    13:30 4221 27.7 64 10877
    14:00 4216 27.7 64 10877
    14:30 4217 27.4 64 10864
    15:00 4223 27.5 64 10851
    15:30 4216 27.6 64 10891
    16:00 4218 27.2 64 10877
    16:30 4216 27.4 64 10891
    下载: 导出CSV
  • [1]

    TANG X H. High power transverse flow CO2 laser and its applications[M]. Wuhan:Huazhong University of Science and Technology Press, 2008:69-75(in Chinese).
    [2]

    TORII K, KWAK K M, NISHINO K. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2002, 45(18):3795-3801. doi: 10.1016/S0017-9310(02)00080-7
    [3]

    KWAK K M, TORII K, NISHINO K. Simultaneous heat transfer enhancement and pressure loss Reduction for finned-tube bundles with the first or two transverse rows of built-in winglets[J]. Experimental Thermal and fluid Science, 2005, 29(5):625-632. doi: 10.1016/j.expthermflusci.2004.08.005
    [4]

    WU J M, TAO W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A:Verification of field synergy principle[J]. International Journal of Heat and Mass Transfer, 2008, 51(5):1179-1191. 
    [5]

    WU J M, TAO W Q. Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B:Parametric study of major influence factors[J]. International Journal of Heat and Mass Transfer, 2008, 51(13):3683-3692. 
    [6]

    JOARDAR A, JACOBI A M. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers[J]. International Journal of Refrigeration, 2008, 31(1):87-97. doi: 10.1016/j.ijrefrig.2007.04.011
    [7]

    SU Sh C, LI G C, CHEN M H, et al. Flow and heat transfer analysis of fin-and-tube heat exchangers with side-mounted trapezium winglets[J].Proceedings of the CSEE, 2012, 32(35):87-91(in Chinese). 
    [8]

    LEU J S, WU Y H, JANG J Y. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators[J]. International Journal of Heat and Mass Transfer, 2004, 47(19):4327-4338. 
    [9]

    TIAN L, HE Y, TAO Y, et al. A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in stagge red and in-line arrangements[J]. International Journal of Thermal Sciences, 2009, 48(9):1765-1776. doi: 10.1016/j.ijthermalsci.2009.02.007
    [10]

    CHU P, HE Y L, LEI Y G, et al. Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators[J]. Applied Thermal Engineering, 2009, 29(5):859-876. 
    [11]

    LI L, DU X, ZHANG Y, et al. Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators[J]. International Journal of Thermal Sciences, 2015, 92:85-96. doi: 10.1016/j.ijthermalsci.2015.01.030
    [12]

    ZHOU G B, YANG L Sh. Influence of different vortex generators on heat transfer in direct air-cooled condensers[J]. Proceedings of the CSEE, 2012, 32(5):1-7(in Chinese). 
    [13]

    YE Q L, ZHOU G B, CHENG J M, et al. Influence of different vortex generators on heat transfer enhancement and pressure drop characteristics in a rectangular channel[J]. Proceedings of the CSEE, 2010, 30(11):86-91(in Chinese). 
    [14]

    ZHOU G B, YE Q L. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators[J]. Applied Thermal Engineering, 2012, 37(5):241-248. 
    [15]

    LU G, ZHOU G. Numerical simulation on performances of plane and curved winglet-Pair vortex generators in a rectangular channel and field synergy analysis[J]. International Journal of Thermal Sciences, 2016, 109:323-333. doi: 10.1016/j.ijthermalsci.2016.06.024
    [16]

    LU G, ZHOU G. Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes[J]. International Journal of Heat and Mass Transfer, 2016, 102:679-690. doi: 10.1016/j.ijheatmasstransfer.2016.06.063
    [17]

    ZHOU G, FENG Z. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes[J]. International Journal of Thermal Sciences, 2014, 78:26-35. doi: 10.1016/j.ijthermalsci.2013.11.010
    [18]

    WANG W J, WANG Y Q, ZHAO H, et al. The application of computational fluid dynamic method in designing heat exchanger of CO2 laser[J]. Laser Technology, 2014, 38(6):729-732(in Chinese). 
    [19]

    WANG W J, BAO Y, WANG Y Q. Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators[J]. Applied Thermal Engineering, 2015, 86:27-34. doi: 10.1016/j.applthermaleng.2015.04.041
  • [1] 王文进王又青赵恒胡逸赵江 . 计算流体力学在CO2激光器换热器设计中的应用. 激光技术, 2014, 38(6): 729-732. doi: 10.7510/jgjs.issn.1001-3806.2014.06.002
    [2] 符永宏李进符昊张航成潘彩云 . 45#钢光纤激光毛化数值模拟及实验研究. 激光技术, 2017, 41(6): 909-915. doi: 10.7510/jgjs.issn.1001-3806.2017.06.028
    [3] 杨元杰李育德刘静伦张力军许德富 . 不含热池的11μm附近热带连续波CO2激光器实验研究. 激光技术, 2006, 30(2): 218-220.
    [4] 易亨瑜齐予易欣仪黄吉金 . 通用原子公司高能激光器研制进展. 激光技术, 2017, 41(2): 213-220. doi: 10.7510/jgjs.issn.1001-3806.2017.02.014
    [5] 黎大军杜戈果 . 掺铥光纤激光器研究进展. 激光技术, 2007, 31(5): 540-543.
    [6] 郭嘉伟李彤牛瑞华薛亮平李燕凌王宏元 . Cr,Tm,Ho:YAG激光器温度特性的数值分析. 激光技术, 2011, 35(6): 761-764. doi: 10.3969/j.issn.1001-3806.2011.06.010
    [7] 王鹏飞马再如李密宋影松魏泳涛张玉明冯国英陈建国 . 流体液体激光器的热流场对输出光场的影响. 激光技术, 2010, 34(6): 861-864. doi: 10.3969/j.issn.1001-3806.2010.06.037
    [8] 吴羽龙晓莉焦中兴何广源张倩 . 热透镜效应补偿的高功率Nd:YAG激光器的优化设计. 激光技术, 2015, 39(3): 377-380. doi: 10.7510/jgjs.issn.1001-3806.2015.03.021
    [9] 詹小红朱仁江蒋茂华胡平崔玉亭张鹏 . 外腔面发射激光器自发辐射谱的热特性. 激光技术, 2016, 40(4): 610-614. doi: 10.7510/jgjs.issn.1001-3806.2016.04.032
    [10] 巩马理王生利柳强黄磊高松张海涛 . LD角抽运Nd:YAG/YAG复合板条激光器热焦距分析. 激光技术, 2009, 33(4): 337-339,343. doi: 10.3969/j.issn.1001-3806.2009.04.001
    [11] 王灿召李丽尚卫东孙建国郭占斌李忠华 . 正分支共焦非稳腔的脉冲固体激光器研究. 激光技术, 2013, 37(4): 441-444. doi: 10.7510/jgjs.issn.1001-3806.2013.04.006
    [12] 路峻岭王兰俊 . CuBr激光器放电回路参数优选的正交设计实验. 激光技术, 2006, 30(2): 113-115,122.
    [13] 王立伟叶兵尹婉饶东升赵炎鑫 . Cr,Tm,Ho:YAG激光器能量输出与碎石实验研究. 激光技术, 2015, 39(5): 727-730. doi: 10.7510/jgjs.issn.1001-3806.2015.05.030
    [14] 路晓川张阔海谭荣清黄伟柯常军 . 射频激励矩形波导CO2激光器的设计和实验研究. 激光技术, 2017, 41(2): 159-162. doi: 10.7510/jgjs.issn.1001-3806.2017.02.002
    [15] 汪延安柯一枝崔恩楠潘镔蔡美伶陈松聂佳林胡淼 . 双频微片激光器的功率均衡机制实验研究. 激光技术, 2018, 42(5): 651-654. doi: 10.7510/jgjs.issn.1001-3806.2018.05.013
    [16] 王宁陆雨田李晓莉焦志勇 . 部分端面抽运混合腔Nd:YVO4板条激光器实验研究. 激光技术, 2008, 32(2): 125-127.
    [17] 李斌成 . 全固态单模Nd:YAG激光器输出特性优化的实验研究. 激光技术, 2007, 31(2): 144-146.
    [18] 李燕凌曾钦勇李彤牛瑞华薛亮平 . Cr, Tm, Ho:YAG激光器输出的实验研究. 激光技术, 2008, 32(6): 563-565.
    [19] 李晨廖素英周洁闫平巩马理 . 光纤激光器凸端面选模理论和实验研究. 激光技术, 2009, 33(5): 512-514,517. doi: 10.3969/j.issn.1001-3806.2009.05.014
    [20] 吴钟壮伏云昌刘洪喜张晓伟王传琦李俊昌 . CO2激光器功率分布的实验测量及数值模拟. 激光技术, 2012, 36(4): 512-515. doi: 10.3969/j.issn.1001-806.2012.04.019
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  7494
  • HTML全文浏览量:  5179
  • PDF下载量:  245
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-12-15
  • 录用日期:  2017-02-21
  • 刊出日期:  2017-09-25

轴快流CO2激光器翅片管换热器强化换热研究

    通讯作者: 李波, libohust@126.com
    作者简介: 岳建堡(1991-), 男, 硕士研究生, 现主要从事轴快流激光器强化换热的研究
  • 华中科技大学 光学与电子信息学院 激光加工国家工程研究中心, 武汉 430074
基金项目:  科技部中俄国际合作项目 2014DFR10870国家自然科学基金资助项目 61308045

摘要: 为了解决厚板切割领域中高功率轴快流CO2激光器翅片管换热器压力损失大、传热效率低的问题,采用计算流体力学软件ANSYS分析了3种涡流发生器的换热特性,并对换热性能更佳的梯形小翼涡流发生器的形状、长度、高度和安装角度进行优化设计;通过一个开环的风洞实验平台验证了数值模拟数据的可靠性。结果表明,长度11mm、高度2.6mm的梯形小翼涡流发生器采用30°迎角渐缩方式布置时换热性能最佳,在雷诺数为600~1600范围内,和没有安装涡流发生器相比,梯形小翼涡流发生器的努塞尔数Nu提高了8%~22%,摩擦因子上升了16%~27%;8h稳定输出功率4216W,比额定输出功率高出5.4%。该研究提高了CP4000系列激光器的厚板切割能力。

English Abstract

    • 换热器是保证高功率CO2激光器长期稳定运行的关键一环,目前激光器中使用的换热器主要有管板式、绕片式和翅片式3种,其中翅片式换热器,尤其是矩形翅片式换热器应用最为广泛[1]。高功率CO2激光器工作于低气压密闭环境,气体密度小、温度高、导热系数和粘度大、定压比热容高。特殊的工作环境要求换热器要具有更强的换热能力,强化换热技术将更加适合功率越来越高的CO2激光器。目前,国内外相关学者关于涡流发生器进行了广泛的研究。日本学者TORII[2-3]对涡流发生器布置方式进行了研究,提出在低雷诺数下,渐缩的布置方式更能提高换热器综合换热效率。WU[4-5]运用场协同原理分析了涡流发生器强化换热机理,指出涡流发生器产生的纵涡减小了速度与流体温度梯度的交角,加强了换热器整体的换热效果。关于涡流发生器的安装位置的研究主要集中在水管两侧[6-7]和水管侧后方[8-11],其中在水管侧后方的研究较多。近年来,许多学者对涡流发生器形状进行了研究,ZHOU[12]、YE[13]等人分析了6种涡流发生器在空冷凝汽器中的换热特性,并且对小翼型涡流发生器弯曲[14-15]、开孔[16-17]后的特性进行了深入研究。WANG通过对轴快流CO2激光器换热器的设计,证明了计算流体力学是一种高效的激光器换热器设计方法[18], 并且提出了一种新型的组合小翼涡流发生器[19],产生的马蹄涡可以减小水管尾区面积,增强了换热效果。但是主要针对激光器换热器的涡流发生器研究较少,本文中主要就是在激光器工作环境下针对矩形翅片管换热器的涡流发生器设计。

    • 本文中设计的换热器主要应用于CP4000系列轴快流CO2激光器,激光器内部结构如图 1所示。可以看出, 换热器整体结构较复杂,体积较大。

      Figure 1.  Internal structure of CP4000 series axial-fast-flow CO2 laser

    • 翅片管换热器几何模型复杂,由于计算机计算能力有限,如果选取换热器的全部区域进行网格划分,很难得到高质量的网格,所以需要对模型进行适当的简化。翅片管换热器如图 2所示,具有高度的对称性。选取图 2中的虚线之间的区域作为计算区域,左右处设置周期性边界条件,上下面设置对称边界条件。由于换热器工作于低雷诺数条件下,而且较小的压力损可以减小风机负荷,保证激光器更稳定运行,因此,本文中采用渐缩方式,仅第1排布置涡流发生器。

      Figure 2.  Sketch of numerical simulation zone

      由于换热器几何结构复杂,考虑到计算机的计算能力,对换热器几何模型进行适当简化:由于管壁很薄,仅为1.0mm,而导热系数很大,所以近似认为换热管温度等于水温;水温变化很小,可以认为水温恒定,用进水管和出水管平均温度表示水温;由于换热管与翅片的接触热阻很小,所以翅片与换热管接触部分与水温相同;忽略辐射传热的影响,认为对流传热是唯一热交换方式。

    • 为了对数据进行统一对比分析,需要对相关参量和一些基本物理量进行简单介绍。

      雷诺数是表征流体流动状态的一种无量纲参量,它反映了流体的稳定状态,用Re表示:

      $ Re = \frac{{Dv\rho }}{\mu } $

      (1)

      式中,D为流道的水利直径,v为流体的速度,ρμ分别为流体特征参量下的密度和粘度系数。

      对流换热系数h0是表征换热器换热强度的物理量:

      $ {h_0} = \frac{Q}{{{A_0}\Delta T}} $

      (2)

      式中,Q为换热器传热量,A0为换热器传热面积,ΔT为对数温差。

      Nu为努塞尔数,是一个无量纲物理量,它不仅可以表征换热器对流换热的强弱,同时也反映了流体流动时边界层热阻对对流换热的影响。

      $ Nu = \frac{{{h_0}D}}{\lambda } $

      (3)

      式中,λ为定性参量下流体的热传导系数。

      f0为基础工况下的摩擦因子,也称为阻力因子,是表示流体流动阻力和能量损失的物理量。

      $ {f_0} = \frac{{\Delta p}}{{\frac{{\rho {v_{\rm{m}}}^2{A_{\rm{t}}}}}{{2{A_{\rm{m}}}}}}} $

      (4)

      式中,Δp为换热器出口与入口压差,vm为换热器流道内最小截面处的速率,At为换热器总的换热面积,Am为换热器流道内最小截面处的面积。

      强化换热技术综合评价指标(performance evaluation criteria,PEC)η是用来评价强化换热效果的标准。为了得到不同的优化目标的η,可以取等流量、等压差和等泵功3种条件。由于高功率CO2激光器采用的矩形翅片管换热器要求气体循环系统压力损失尽量小,以保证放电区域足够高的流速,因此本文中设计的湍流发生器在等压差条件下讨论其换热性能。

      $ \eta = \frac{{\frac{{Nu}}{{N{u_0}}}}}{{{{\left( {\frac{f}{{{f_0}}}} \right)}^{0.5}}}} $

      (5)

      式中,Nu0是基础工况下的努塞尔数;f是实际工况下的摩擦因子。

    • 长方形、三角形、梯形是常见的3种翼型涡流发生器,图 3是它们的努塞尔数和摩擦因子随雷诺数变化的比较。可以看出,相比于没有安装涡流发生器的情况,长方形小翼的Nu提高幅度最大,为10%~27%,梯形小翼的Nu提高了8%~22%,三角形小翼的Nu提高了6%~ 14%,其中梯形小翼的Nu相比于长方形小翼下降不明显,而三角形小翼的Nu下降幅度很大,并且随Re的增大更加明显。另外,图中还可以看出,长方形小翼的阻力因子也最大,相对于没有安装涡流发生器时提高了24%~33%,梯形小翼提高了16%~27%,三角形小翼提高了12%~ 22%。

      Figure 3.  Relationship of Nu, f and Re of three vortex generators

      分析数据可以发现,三角形小翼的Nu相对于梯形小翼和长方形小翼下降幅度明显,换热能力较差,而梯形小翼与长方形小翼Nuf相差幅度较小。图 4图 5分别是3种涡流发生器产生的涡流强度对比图和温度云图。可以看出,涡流发生器在其后方除了产生一个主涡外,还有一个强度较小,由主涡产生的诱导涡。长方形小翼后方产生的主涡强度最大,而诱导涡较小。梯形小翼虽然主涡强度有所减小,但是由于其高度是渐渐变大的,有助于诱导涡的产生,因此产生了两个强度相当的涡流。三角形小翼也是有两个强度相当的涡流,但是其相对于梯形小翼下降明显。从图 5中也可以就看出,长方形小翼涡流发生器后放有一个强度较大的低温区,而梯形与三角形小翼涡流发生器后产生了两个低温区域,而且梯形小翼温度变化更明显。另外,图 5还可以看出,第一排水管尾部区域有效利用面积方面长方形小翼最大,梯形小翼次之,三角形小翼最小,这其实和涡流发生器迎风面面积有关,面积越大流速越快,相应的水管尾部利用面积也越大。

      Figure 4.  Vortex strength of three vortex generators

      Figure 5.  Temperature contours of three vortex generators

      图 6是3种涡流发生器综合换热因子η变化曲线。其横坐标表示流体的雷诺数,纵坐标代表了PEC因子ηη是在没有安装涡流发生器的基础上得出的。从图中可以看出,当雷诺数小于1000时,3种涡流发生器换热性能相差不大,梯形小翼涡流发生器的换热效果更好一点,当雷诺数大于1000时,梯形小翼的换热性能优势明显。

      Figure 6.  Relationship between η and Re of three vortex generators

    • 图 7是不同安装角度梯形小翼涡流发生器的Nuf随雷诺数变化曲线,可以看出, 随着安装角度的增大,Nu上升明显,15°安装迎角时Nu提高了4%~12%,f上升了12%~20%;30°安装迎角时Nu提高了8%~22%,f上升了16%~27%;45°安装迎角时Nu提高了13%~28%,f上升了27%~39%。分析可知,当安装迎角从15°增大到30°时,努塞尔数上升幅度大于从30°增大到45°时Nu的上升幅度,而f的上升幅度却较小。

      Figure 7.  Relationship of Nu, f and Re of three vortex generators with different angles

      图 8η因子变化曲线中可以清楚地看出,30°安装迎角的综合换热性能最佳,并且随着雷诺数的增加,综合换热性能提升更明显。

      Figure 8.  Relationship of η and Re of three vortex generators with different angles

    • 为了对不同长度梯形小翼涡流发生器进行研究,本节中针对高度为2.6mm、安装迎角为30°、长度分别为9.0mm, 11.0mm和13.0mm的涡流发生器的换热特性进行对比分析,图 9是3种长度涡流发生器的Nuf随雷诺数变化曲线。图 10是它们相对于没有安装涡流发生器的η因子变化曲线。可以看出, 长度为11.0mm的梯形小翼涡流发生器综合换热性能更佳,Nu提高了8%~22%,f上升了16%~27%;9.0mm时Nu提高了5%~14%,f上升了14%~22%;13.0mm时Nu提高了13%~27%,f上升了26%~37%。长度从9.0mm增加到11.0mm和从11.0mm增加到13.0mm时Nu上升幅度相近,f上升幅度较小。这是因为不同长度涡流发生器影响了水管后翅片的有效利用面积,长度越长,有效利用面积越大,与此同时压力损失也增大。因此,存在一个最佳长度使综合换热效果最佳,本文中研究范围内,11.0mm综合换热因子η最大。

      Figure 9.  Relationship of Nu, f and Re of three vortex generators with different lengths

      Figure 10.  Relationship of η and Re of three vortex generators with different lengths

    • 不同高度的梯形小翼主要对其后方的涡流强度有较大影响,高度太低会导致梯形小翼背压太小,影响涡流强度,而高度太高又会影响气体的正常通过,引起压损增高,对综合换热性能不利。因此,存在一个合适的高度使综合换热性能最佳。为了方便比较分析,采用30°安装迎角、长度为11.0mm、高度分别为2.4mm, 2.6mm, 2.8mm的梯形小翼进行数值模拟,图 11是其Nuf随雷诺数变化曲线。图 12是其η因子变化曲线。可以看出,高度为2.4mm, 2.6mm和2.8mm时, Nu分别提高了6%~16%, 8%~22%和11%~27%;f上升了15%~23%, 16%~27%和26%~38%。经过对比可知,高度为2.6mm时换热性能最佳。

      Figure 11.  Relationship of Nu, f and Re of three vortex generators with different heights

      Figure 12.  Relationship of η and Re of three vortex generators with different heights

    • 由于激光器要求气密较高,拆卸封装难度大,而实验只需要验证模拟数据的可靠性,不必对每一组模拟数据都进行实验验证,因此本文中采用一个开环的风洞实验平台对平直翅片模拟数据进行实验验证,实验装置如图 13所示。左侧是空气进口,依次经过加热器、整流器进入换热器,在换热器两侧加装温度传感器和压力计,换热器出口还要设置流量计,通过改变气体流量来实现雷诺数的变化,整个实验平台用一台频率可调的涡轮风机来驱动,通过调频改变气体流量。

      Figure 13.  Sketch of experiment system

      将挡板用密封胶密封,打开风机测试装置的密闭性。通过调节变频器控制风机工作状态以达到流量测量点,调节加热器功率以达到换热器进口温度,待系统稳定后记录数据。调节风机频率达到下一个流量测量点,记录相关数据,如图 14所示。

      Figure 14.  Relationship of Nu, f and Re of numerical simulations and experimental results

      图 14中可以看出,实验值与模拟值基本吻合,Nu最大误差为8.6%,f值最大误差小于6.4%。因此,通过CFD软件ANSYS对换热器建模来进行强化换热的研究方式是可靠的。

    • 激光器换热器换热效率的提高可以减小流道压力损失,使风机在额定功率下流过放电管的工作气体流量增加,从而提升激光高压电源注入功率,获得更高的激光输出功率。图 15是安装梯形小翼涡流发生器的换热器和没有安装涡流发生器的换热器对比图。可以看出, 安装无涡流发生器后由于换热性能得到一定的提升,换热器体积有所减小。

      Figure 15.  Experiment of two kinds of heat exchanger a—no vortex generators b—trapezium vortex generators

      表 1是激光器8h稳定运行数据,可以看出新型换热器运行结果稳定,激光功率波动较小,并且相对于额定功率有5.4%的提升。

      Table 1.  Record of laser output

      time laser power/W water temp/℃ gas flow rate/(L·h-1) laser pressure/Pa
      8:00 4216 27.7 64 10850
      8:30 4221 27.5 64 10877
      9:00 4219 27.6 64 10904
      9:30 4219 27.4 64 10891
      10:00 4218 27.2 64 10877
      10:30 4215 27.3 64 10824
      11:00 4214 27.7 64 10864
      11:30 4216 27.8 64 10904
      12:00 4217 27.6 64 10904
      12:30 4219 27.6 64 10864
      13:00 4217 27.8 64 10864
      13:30 4221 27.7 64 10877
      14:00 4216 27.7 64 10877
      14:30 4217 27.4 64 10864
      15:00 4223 27.5 64 10851
      15:30 4216 27.6 64 10891
      16:00 4218 27.2 64 10877
      16:30 4216 27.4 64 10891
    • 为了解决CP4000系列轴快流CO2激光器翅片管换热器传热效率低的问题,本文中采用数值模拟的方法设计了适合激光器换热器的一种梯形小翼涡流发生器,并对模拟数据进行了合理性验证,最终在激光器上调试运行稳定。

      (1) 梯形小翼涡流发生器更适合CP4000系列轴快流CO2激光器的换热器,长度为11mm,高度为2.6mm,采用30°角的安装方式换热效果更佳,相比于平直翅片,等压降条件下η因子最高为1.093。

      (2) 梯形小翼涡流发生器相对于长方形小翼形阻下降明显,又由于梯形形状是渐变的,可以产生较明显的诱导涡流,对涡流发生器右侧热流影响较大,增强换热效率的同时压损较小。

      (3) 通过搭建开环风洞实验平台验证模拟数据的合理性,设计的新型带梯形小翼涡流发生器的换热器在激光器上可以实现长时间稳定运行,激光输出功率提高了约5.4%。

参考文献 (19)

目录

    /

    返回文章
    返回