-
本文中设计的换热器主要应用于CP4000系列轴快流CO2激光器,激光器内部结构如图 1所示。可以看出, 换热器整体结构较复杂,体积较大。
-
翅片管换热器几何模型复杂,由于计算机计算能力有限,如果选取换热器的全部区域进行网格划分,很难得到高质量的网格,所以需要对模型进行适当的简化。翅片管换热器如图 2所示,具有高度的对称性。选取图 2中的虚线之间的区域作为计算区域,左右处设置周期性边界条件,上下面设置对称边界条件。由于换热器工作于低雷诺数条件下,而且较小的压力损可以减小风机负荷,保证激光器更稳定运行,因此,本文中采用渐缩方式,仅第1排布置涡流发生器。
由于换热器几何结构复杂,考虑到计算机的计算能力,对换热器几何模型进行适当简化:由于管壁很薄,仅为1.0mm,而导热系数很大,所以近似认为换热管温度等于水温;水温变化很小,可以认为水温恒定,用进水管和出水管平均温度表示水温;由于换热管与翅片的接触热阻很小,所以翅片与换热管接触部分与水温相同;忽略辐射传热的影响,认为对流传热是唯一热交换方式。
-
为了对数据进行统一对比分析,需要对相关参量和一些基本物理量进行简单介绍。
雷诺数是表征流体流动状态的一种无量纲参量,它反映了流体的稳定状态,用Re表示:
$ Re = \frac{{Dv\rho }}{\mu } $
(1) 式中,D为流道的水利直径,v为流体的速度,ρ和μ分别为流体特征参量下的密度和粘度系数。
对流换热系数h0是表征换热器换热强度的物理量:
$ {h_0} = \frac{Q}{{{A_0}\Delta T}} $
(2) 式中,Q为换热器传热量,A0为换热器传热面积,ΔT为对数温差。
Nu为努塞尔数,是一个无量纲物理量,它不仅可以表征换热器对流换热的强弱,同时也反映了流体流动时边界层热阻对对流换热的影响。
$ Nu = \frac{{{h_0}D}}{\lambda } $
(3) 式中,λ为定性参量下流体的热传导系数。
f0为基础工况下的摩擦因子,也称为阻力因子,是表示流体流动阻力和能量损失的物理量。
$ {f_0} = \frac{{\Delta p}}{{\frac{{\rho {v_{\rm{m}}}^2{A_{\rm{t}}}}}{{2{A_{\rm{m}}}}}}} $
(4) 式中,Δp为换热器出口与入口压差,vm为换热器流道内最小截面处的速率,At为换热器总的换热面积,Am为换热器流道内最小截面处的面积。
强化换热技术综合评价指标(performance evaluation criteria,PEC)η是用来评价强化换热效果的标准。为了得到不同的优化目标的η,可以取等流量、等压差和等泵功3种条件。由于高功率CO2激光器采用的矩形翅片管换热器要求气体循环系统压力损失尽量小,以保证放电区域足够高的流速,因此本文中设计的湍流发生器在等压差条件下讨论其换热性能。
$ \eta = \frac{{\frac{{Nu}}{{N{u_0}}}}}{{{{\left( {\frac{f}{{{f_0}}}} \right)}^{0.5}}}} $
(5) 式中,Nu0是基础工况下的努塞尔数;f是实际工况下的摩擦因子。
-
由于激光器要求气密较高,拆卸封装难度大,而实验只需要验证模拟数据的可靠性,不必对每一组模拟数据都进行实验验证,因此本文中采用一个开环的风洞实验平台对平直翅片模拟数据进行实验验证,实验装置如图 13所示。左侧是空气进口,依次经过加热器、整流器进入换热器,在换热器两侧加装温度传感器和压力计,换热器出口还要设置流量计,通过改变气体流量来实现雷诺数的变化,整个实验平台用一台频率可调的涡轮风机来驱动,通过调频改变气体流量。
将挡板用密封胶密封,打开风机测试装置的密闭性。通过调节变频器控制风机工作状态以达到流量测量点,调节加热器功率以达到换热器进口温度,待系统稳定后记录数据。调节风机频率达到下一个流量测量点,记录相关数据,如图 14所示。
从图 14中可以看出,实验值与模拟值基本吻合,Nu最大误差为8.6%,f值最大误差小于6.4%。因此,通过CFD软件ANSYS对换热器建模来进行强化换热的研究方式是可靠的。
-
激光器换热器换热效率的提高可以减小流道压力损失,使风机在额定功率下流过放电管的工作气体流量增加,从而提升激光高压电源注入功率,获得更高的激光输出功率。图 15是安装梯形小翼涡流发生器的换热器和没有安装涡流发生器的换热器对比图。可以看出, 安装无涡流发生器后由于换热性能得到一定的提升,换热器体积有所减小。
Figure 15. Experiment of two kinds of heat exchanger a—no vortex generators b—trapezium vortex generators
表 1是激光器8h稳定运行数据,可以看出新型换热器运行结果稳定,激光功率波动较小,并且相对于额定功率有5.4%的提升。
Table 1. Record of laser output
time laser power/W water temp/℃ gas flow rate/(L·h-1) laser pressure/Pa 8:00 4216 27.7 64 10850 8:30 4221 27.5 64 10877 9:00 4219 27.6 64 10904 9:30 4219 27.4 64 10891 10:00 4218 27.2 64 10877 10:30 4215 27.3 64 10824 11:00 4214 27.7 64 10864 11:30 4216 27.8 64 10904 12:00 4217 27.6 64 10904 12:30 4219 27.6 64 10864 13:00 4217 27.8 64 10864 13:30 4221 27.7 64 10877 14:00 4216 27.7 64 10877 14:30 4217 27.4 64 10864 15:00 4223 27.5 64 10851 15:30 4216 27.6 64 10891 16:00 4218 27.2 64 10877 16:30 4216 27.4 64 10891
轴快流CO2激光器翅片管换热器强化换热研究
Study on heat transfer enhancement of fin-and-tube heat exchangers in fast-axial-flow CO2 lasers
-
摘要: 为了解决厚板切割领域中高功率轴快流CO2激光器翅片管换热器压力损失大、传热效率低的问题,采用计算流体力学软件ANSYS分析了3种涡流发生器的换热特性,并对换热性能更佳的梯形小翼涡流发生器的形状、长度、高度和安装角度进行优化设计;通过一个开环的风洞实验平台验证了数值模拟数据的可靠性。结果表明,长度11mm、高度2.6mm的梯形小翼涡流发生器采用30°迎角渐缩方式布置时换热性能最佳,在雷诺数为600~1600范围内,和没有安装涡流发生器相比,梯形小翼涡流发生器的努塞尔数Nu提高了8%~22%,摩擦因子上升了16%~27%;8h稳定输出功率4216W,比额定输出功率高出5.4%。该研究提高了CP4000系列激光器的厚板切割能力。Abstract: In order to solve the problem of high pressure loss and low heat transfer efficiency of fin-and-tube heat exchangers in a high power axial flow fast CO2 laser in the thick plate cutting field, computational fluid dynamics software ANSYS was used to analyze the heat transfer characteristics of 3 kinds of vortex generators. The shape, length, height and angle of trapezoidal winglet vortex generator with better heat transfer performance were optimized. The reliability of the numerical simulation data was verified through an open loop wind tunnel experimental platform. The results show that the optimum heat transfer performance is gotten with trapezoidal winglet vortex generator of 11mm length, 2.6mm height and 30° angle of attack which is gradually reduced. Compared with the generator without installing vortex, the heat transfer performance of trapezoidal winglet vortex generator Nu is increased by 8%~22%, and the friction factor is increased by 16%~27%, in Reynolds number of 600~1600. Test results of CP4000 series axial fast flow CO2 laser show that the stable output power of 8h is 4216W, 5.4% higher than the rated output power. The study improves the plate cutting capacity of CP4000 series lasers.
-
Table 1. Record of laser output
time laser power/W water temp/℃ gas flow rate/(L·h-1) laser pressure/Pa 8:00 4216 27.7 64 10850 8:30 4221 27.5 64 10877 9:00 4219 27.6 64 10904 9:30 4219 27.4 64 10891 10:00 4218 27.2 64 10877 10:30 4215 27.3 64 10824 11:00 4214 27.7 64 10864 11:30 4216 27.8 64 10904 12:00 4217 27.6 64 10904 12:30 4219 27.6 64 10864 13:00 4217 27.8 64 10864 13:30 4221 27.7 64 10877 14:00 4216 27.7 64 10877 14:30 4217 27.4 64 10864 15:00 4223 27.5 64 10851 15:30 4216 27.6 64 10891 16:00 4218 27.2 64 10877 16:30 4216 27.4 64 10891 -
[1] TANG X H. High power transverse flow CO2 laser and its applications[M]. Wuhan:Huazhong University of Science and Technology Press, 2008:69-75(in Chinese). [2] TORII K, KWAK K M, NISHINO K. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers[J]. International Journal of Heat and Mass Transfer, 2002, 45(18):3795-3801. doi: 10.1016/S0017-9310(02)00080-7 [3] KWAK K M, TORII K, NISHINO K. Simultaneous heat transfer enhancement and pressure loss Reduction for finned-tube bundles with the first or two transverse rows of built-in winglets[J]. Experimental Thermal and fluid Science, 2005, 29(5):625-632. doi: 10.1016/j.expthermflusci.2004.08.005 [4] WU J M, TAO W Q. Numerical study on laminar convection heat transfer in a rectangular channel with longitudinal vortex generator. Part A:Verification of field synergy principle[J]. International Journal of Heat and Mass Transfer, 2008, 51(5):1179-1191. [5] WU J M, TAO W Q. Numerical study on laminar convection heat transfer in a channel with longitudinal vortex generator. Part B:Parametric study of major influence factors[J]. International Journal of Heat and Mass Transfer, 2008, 51(13):3683-3692. [6] JOARDAR A, JACOBI A M. Heat transfer enhancement by winglet-type vortex generator arrays in compact plain-fin-and-tube heat exchangers[J]. International Journal of Refrigeration, 2008, 31(1):87-97. doi: 10.1016/j.ijrefrig.2007.04.011 [7] SU Sh C, LI G C, CHEN M H, et al. Flow and heat transfer analysis of fin-and-tube heat exchangers with side-mounted trapezium winglets[J].Proceedings of the CSEE, 2012, 32(35):87-91(in Chinese). [8] LEU J S, WU Y H, JANG J Y. Heat transfer and fluid flow analysis in plate-fin and tube heat exchangers with a pair of block shape vortex generators[J]. International Journal of Heat and Mass Transfer, 2004, 47(19):4327-4338. [9] TIAN L, HE Y, TAO Y, et al. A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in stagge red and in-line arrangements[J]. International Journal of Thermal Sciences, 2009, 48(9):1765-1776. doi: 10.1016/j.ijthermalsci.2009.02.007 [10] CHU P, HE Y L, LEI Y G, et al. Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators[J]. Applied Thermal Engineering, 2009, 29(5):859-876. [11] LI L, DU X, ZHANG Y, et al. Numerical simulation on flow and heat transfer of fin-and-tube heat exchanger with longitudinal vortex generators[J]. International Journal of Thermal Sciences, 2015, 92:85-96. doi: 10.1016/j.ijthermalsci.2015.01.030 [12] ZHOU G B, YANG L Sh. Influence of different vortex generators on heat transfer in direct air-cooled condensers[J]. Proceedings of the CSEE, 2012, 32(5):1-7(in Chinese). [13] YE Q L, ZHOU G B, CHENG J M, et al. Influence of different vortex generators on heat transfer enhancement and pressure drop characteristics in a rectangular channel[J]. Proceedings of the CSEE, 2010, 30(11):86-91(in Chinese). [14] ZHOU G B, YE Q L. Experimental investigations of thermal and flow characteristics of curved trapezoidal winglet type vortex generators[J]. Applied Thermal Engineering, 2012, 37(5):241-248. [15] LU G, ZHOU G. Numerical simulation on performances of plane and curved winglet-Pair vortex generators in a rectangular channel and field synergy analysis[J]. International Journal of Thermal Sciences, 2016, 109:323-333. doi: 10.1016/j.ijthermalsci.2016.06.024 [16] LU G, ZHOU G. Numerical simulation on performances of plane and curved winglet type vortex generator pairs with punched holes[J]. International Journal of Heat and Mass Transfer, 2016, 102:679-690. doi: 10.1016/j.ijheatmasstransfer.2016.06.063 [17] ZHOU G, FENG Z. Experimental investigations of heat transfer enhancement by plane and curved winglet type vortex generators with punched holes[J]. International Journal of Thermal Sciences, 2014, 78:26-35. doi: 10.1016/j.ijthermalsci.2013.11.010 [18] WANG W J, WANG Y Q, ZHAO H, et al. The application of computational fluid dynamic method in designing heat exchanger of CO2 laser[J]. Laser Technology, 2014, 38(6):729-732(in Chinese). [19] WANG W J, BAO Y, WANG Y Q. Numerical investigation of a finned-tube heat exchanger with novel longitudinal vortex generators[J]. Applied Thermal Engineering, 2015, 86:27-34. doi: 10.1016/j.applthermaleng.2015.04.041