-
基于上述BHWC型气体池光学结构特征,结合监测仪系统小型化需求,为实现10m吸收总光程,设计中选择吸收池的基本光程为250mm,通过40次折返实现,出入射用两个镀金平面反射镜以控制出入射光角度。为保证监测仪的探测性能,需要优化两个主要问题:(1)经气体池后的成像质量,以保证在探测面的有效探测;(2)气体池的光能传输效率,以保证系统具有足够的信噪比。
BHWC型结构为球面共轭成像系统,入射角通常控制在10°以内,故高阶像差远不如低阶像差显著,在低阶像差中以像散为主要因素,根据公式[4]:
$ {L_{{\text{s,m}}}} = \frac{n}{R}\left( {\frac{{{p^2}}}{3} - \frac{{{h^2}}}{4}} \right) - \frac{{{n^2}p\mathit{\Delta }}}{{30{R^3}}}\left( {5{h^2} + 2{p^2}} \right) $
(1) 式中参量如图 2所示。以场镜中心建立坐标系,其中Ls, m为弧矢面与子午面的距离,光程数n=40,球面半径R=500mm。场镜上沿尺寸设计为60mm,p=33mm,h为上下两排光斑间距,由此计算出的结果如图 3所示,h取36mm时得到像散Ls, m最小绝对值。
在像散最小的入射条件下,入射光经气体池多次折返后的传输效率将是决定信噪比的重要因素[8],本文中的以下部分将重点讨论在满足理论分析给出光学系统最优像散条件下,以及在VOCs探测工作温度范围内,分析光能传输效率最大化。
在光线追迹软件TracePro中各镀金反射面设定对2μm~14μm的红外光反射率为99%,根据光谱仪参量,模拟光源出光孔径为25.40mm,发散半角为6mrad,同时追迹仿真中选取离轴抛物面镜对由光谱仪出射的光进行汇聚[9],聚焦后光束焦平面与场镜前表面重合,离轴抛物面镜直径25.4mm,焦距为101.6mm。为匹配红外探测器的尺寸(4mm2),出射光经反射镜后,采用两个离轴抛物面镜进一步对光束进行聚焦(如图 4a所示)。由光学追迹法可以看出,经过离轴抛物面镜发射后,入射光在场镜上的光斑直径约为4mm,光斑中心间隔为2mm,在60mm长的场镜上较为充足地利用了成像空间(如图 4b所示),仿真得到理论上进入探测器靶面能量为入射光能的64%。
针对VOCs监测时,气体池工作在特定温度范围内,相应的热膨胀会导致场镜和物镜出现不同自由度上的形变。为分析场、物镜相对位置变化引入的各自由度形变对光能传输效率的影响,在仿真中独立的引入了各自由度容差进行光能传输性能仿真分析。仿真中,采用如图 5所示的坐标系统,以场镜球面几何中心为坐标中心,y轴为光轴方向,x轴与z轴满足右手坐标系。仿真中以入射气体池能量为基准,考察场物镜相对x-y-z轴方向的平移和旋转共6个自由度变化的情况下,探测器靶面接收到的光能的变化情况。
图 5中给出了场镜与物镜相对x-y-z轴平移时光能传输效率的变化情况,从图 5a中可以看出,场镜沿x轴平移曲线平移超过±0.5mm时,传输效率开始下降,原因是出射光部分被场镜边缘遮挡,所以此方向的容差与场镜尺寸有关;场镜沿y轴平移直接破坏了球面共轭系统,在平移超过±0.5mm时,能量传输效率急剧下降;场镜沿z轴变化,能量传输效率较为平稳。综上,设计限制在光能传输效率为60%以上,对应横坐标±0.5mm内。图 5b中,光能传输效率对于物镜在xy轴的平移较为敏感,当产生y轴正负向平移时,曲线均出现能量下降后又上升的趋势,原因是40次光程的光斑逐渐消失,左侧38次光程光斑和右侧42次光程光斑逐渐出现,此时出射光束已存在吸收光程的混叠,所以能量效率曲线出现次峰值;相对而言,z方向的变化对光能传输效率影响不大,故设计限制在±0.1mm内。
图 6中给出了场物镜分别绕x-y-z轴旋转能量效率曲线的变化情况。其中图 6a为场镜绕轴能量效率曲线,可以看出, 场镜绕x轴旋转时,在±1°范围内传输效率保持在60%以上;绕y轴旋转时,传输效率基本未发生变化;出射能量对绕z轴变化较为敏感,在±1°范围内传输效率已降到55%。所以给出出射能量不低于60%时容差范围,对应横坐标在±0.5°内;图 6b中出射能量对于物镜绕x, y, z方向在±1.5°内旋转时,传输效率基本保持平稳相应,故限制容差范围在±1.5°内。综上所述,气体池场、物镜的相对位置变化,造成能量传输效率的变化,其中平移以场镜y方向与物镜y方向较为敏感,旋转以场镜z方向较为敏感,因此在结构中将加以重点约束。
VOCs在线监测气体吸收池的传输效率优化设计
Optimization design of transmission for on-line VOCs sensing gas cell
-
摘要: 为了满足环境监测需求,需要研制一种能够对挥发性有机化合物(VOCs)成分进行在线高灵敏度、高保真监测,并适用于傅里叶变换红外光谱探测配备的气体吸收池,采用光学追迹结合有限元分析的方法,分别对气体池物镜夹持调节机构与光学整体结构固定方式进行优化设计,较为有效地解决了在VOCs监测中气体池工作温度要求下光学器件形变校正的问题,可优化80℃~180℃工作范围内的光能传输效率。给出了一种适用于VOCs气体特定温度条件下吸收池出射能量优化设计的方法,并以此方法为基础,设计加工了一型气体吸收池,进行了热环境测试。结果表明,该吸收池具备在80℃~180℃工作范围内稳定的传输效率,能够应用到VOCs在线监测系统中进行测量。Abstract: In order to meet the needs of environmental monitoring, one gas absorption pool was developed. The gas pool could monitor the composition of volatile organic compounds (VOCs) on-line with high sensitivity and high fidelity, and was suitable for the equipment with Fourier transform infrared spectrum detection device. The method of combination of finite element analysis and optical trace was used to do optimization design of gas pool lens clamping adjustment and the fixed mode of optical whole structure. The problem of distortion correction of optical devices in VOCs monitoring of gas pool was solved effectively. The energy transmission efficiency can be optimized in the working range of 80℃ to 180℃. The method of optimization design of absorption pool output energy, suitable for VOCs gas and at specific temperature, was presented. Based on the method, one type of gas absorption pool was designed and the thermal environment test was carried out. The results show that, the absorption pool has stable transmission efficiency in the working range of 80℃~180℃ and can be applied in on-line VOCs sensing system.
-
-
[1] QIANG W, GANG Z, QI Z. Status and needs research for on-line monitoring of VOCs emissions from stationary sources[J]. Environmental Science, 2013, 34(12):2-3. [2] MEI J, LAN Z, QIAN L X. Definition and control indicators of volatile organic compounds in China[J].Environmental Science, 2015, 36(9):3522-3532. [3] BERNSTEIN H J, HERZBERG G. Rotation-vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths[J]. Journal of Chemical Physics, 1948, 16(1):30-39. [4] XIN C K. Trace gas detection by miniature multi-pass differential optical absorption spectroscopy[D].Beijing: Tsinghua University, 2010: 36-45(in Chinese). [5] WHITE J U. Very long optical paths in air[J].Journal of the Optical Society of America, 1976, 66(5):411-416. doi: 10.1364/JOSA.66.000411 [6] HERRIOT D R, SCHULTE H J. Folded optical delay lines[J]. Applied Optics, 1965, 4(8):883-889. doi: 10.1364/AO.4.000883 [7] RUI W. Research on the long-path cell of infrared spectrum instrument[D]. Tianjin: Tianjin University, 2006: 25-26(in Chinese). [8] WEI Z. Studying of air quality monitoring system based on FTIR[D]. Tianjin: Tianjin University, 2006: 44-45(in Chinese). [9] PENG A Y. Design of the optical structure of the mid-infrared gas sensing system by using the TracePro[J]. Laser & Infrared, 2009, 39(11):1198-1200(in Chinese). [10] HUANG D S. Design of micro-displacement mechanism and analyzing of accuracy in a long optical path air sumulan cell[J]. Journal of Changchun Institute of Optics and Fine Mechanics, 1993, 16(4):45-48(in Chinese). [11] HUA H Z. Effect of nonuni form temperature distribution in gas cell on gas absorption transmissivity[J]. Transactions of Beijing Institute of Technology, 2011, 31(7):865-866(in Chinese). [12] BARTLOME R, BAER M, SIGRIST M W. High-temperature multi-pass cell for infrared spectroscopy of heated gases and vapors[J]. Review of Scientific Instruments, 2006, 78(78):1-2. [13] HUA X, ZHONG D F, JIE G T. High sensitive detection of carbon monoxide based on novel multi-pass cell[J]. Acta Optica Sinica, 2010, 30(9):2597-2598(in Chinese). [14] MONDELAIN D, PEYRET C C, MANTZ A W, et al. Performance of a Herriott cell, designed for variable temperatures between 296 and 20K[J]. Journal of Molecular Spectroscopy, 2007, 24(1):18-25. [15] YAO X. The design of several special optical systems and finite element analysis[D]. Beijing: Beijing Institute of Technology, 2015: 24-26(in Chinese).