Rapid detection method of propellant parameters based on pulsed laser
-
摘要: 为了验证基于脉冲激光作用的发射药能量性能参数快速测量方法的有效性,采用实验方法研究了脉冲激光作用下单、双、三基发射药和单晶冰糖的冲击波及等离子体特性,得到了激光参数对脉冲激光作用过程的影响规律以及单基发射药与单晶冰糖的冲击波、等离子体图像差异。结果表明,单基发射药的冲击波及等离子体膨胀特性主要受其化学反应释能的影响,而冰糖主要受激光辐照度的影响;采用支持向量机回归算法,建立了单、双、三基发射药激光作用下的冲击波特征速度与其火药力、爆热、爆温的线性定标模型,得到的决定系数R2值分别为0.9912、0.9998、0.9999。该方法对发射药火药力、爆热及爆温有较好的预测能力,为脉冲激光与含能材料作用的研究提供了参考。Abstract: In order to verify the applicability of the rapid measurement method of energy performance parameters of propellant based on pulsed laser ablation, a pulsed laser interaction platform with energetic materials and an experimental platform for transient diagnoses such as shockwave and plasma image were firstly established. Based on this platform, the shockwave and plasma characteristics of single, double, and triple base propellant and monocrystal rock sugar under pulsed laser ablation were studied experimentally. The influence of laser parameters on the ablation process of pulse laser and the difference of shockwave and plasma image between the single base propellant and monocrystal rock sugar was obtained. The results show that the shockwave and plasma expansion characteristics of single base propellant are mainly affected by the chemical reaction energy release of energetic substances, while that of rock sugar is mainly affected by laser irradiance. Furthermore, taking single, double, and triple base propellants as samples, based on shockwave propagation distance parameters and laser energy parameters, the linear calibration models of shockwave characteristic velocity and its explosive force, explosive heat, and explosive temperature were established by using support vector machines regression algorithm. The determinate coefficient R2 values were 0.9912, 0.9998, and 0.9999, respectively. The results show that this method predicts the explosive force, explosive heat, and explosive temperature of the propellant well and provides a reference for the study of the interaction between pulsed laser and energetic materials.
-
Keywords:
- laser technique /
- rapid detection /
- pulsed laser ablation /
- propellant /
- shockwave
-
引言
在物体结构测量时,有非光学探测和光学测量方式,其中光学测量技术因为具有非接触、测量速度高、系统结构简单等优点被广泛地应用[1-4]。随着纳米技术的快速发展,对成像系统的空间分辨率的要求越来越高。由于携带物体高频细节信息的倏逝波沿着物体表面按指数衰减,在波长量级的距离内很快衰减为0,导致成像系统在远场受到衍射效应的限制。由于倏逝波携带了物体的更多高频细节信息,利用在近场扫描探测的方法可以获得倏逝波实现超越衍射极限的分辨率,如近场扫描光学显微镜和受激发射损耗荧光显微镜[5-6]。1972年,ASH等人通过近场扫描显微镜,获得了超分辨率显微成像,由于其是通过探针在近场区域逐点进行扫描测量物体的信息,耗时长,无法实时地成像[5]。2000年,PENDRY通过介电常数和磁导率均为负数的材料制成了完美透镜将倏逝波放大,实现了在近场突破衍射极限的成像[7]。2004年, 美国加州大学ZHANG团队利用银板制成了近场透镜[8], 为了实现远场超分辨率成像,2007年,该团队首先利用负折射率材料制成的超级透镜将倏逝波放大,然后利用光栅的频移特性将倏逝波转换成传输波,实现远场超分辨率成像[9], 同年,他们使用双曲透镜实现了远场超分辨率成像,其结构必须严格设计,在实际应用时也受到了限制[10]。近年来,利用微球结合普通的光学显微镜在远场实现了突破衍射极限的分辨率,有结构简单、成本低等优点[11-21],吸引了许多国内外众多学者的关注。作者通过折射率为2、半径为26.5μm的钛酸钡微球与光学显微镜相结合, 实现对蓝光光盘的远场超分辨成像。
1. 理论分析
1.1 普通光学显微镜的极限分辨率
普通光学显微成像系统记录过程的简化模型如图 1所示。(x, y)为物体所在的平面,垂直于物平面的z轴为光的传播方向,物平面距显微物镜面的距离为d1, 显微物镜面的距离与像面的距离为d2, d1和d2满足物像关系。
当用一束平面光波垂直照射被测物体后,在物体表面,即z=0处,物体光波场的分布为[18-22]:
\begin{array}{c} u(\mathit{x}, \mathit{y}, 0) = \\ \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } U } \left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y};0} \right)\exp \left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right]{\rm{d}}{\mathit{\boldsymbol{k}}_x}{\rm{d}}{\mathit{\boldsymbol{k}}_\mathit{y}} \end{array} (1) 式中, (kx, ky)为沿着x, y方向的空间波矢分量。
在空气中传播距离d1后的物体光波场为:
\begin{array}{c} u(\mathit{x}, \mathit{y}, {\mathit{d}_1}) = \int_{ - \infty }^{ + \infty } {\int_{ - \infty }^{ + \infty } U } \left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right) \times \\ \exp \left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y + {\mathit{\boldsymbol{k}}_\mathit{z}}{\mathit{d}_1}} \right)} \right]{\rm{d}}{\mathit{\boldsymbol{k}}_x}{\rm{d}}{\mathit{\boldsymbol{k}}_\mathit{y}} \end{array} (2) 式中, kz2=k02-kx2-ky2,k0为不同方向叠加的空间波矢,k0=2π/λ为光波在传播方向的波数,kz为沿着z方向的空间波矢分量, λ为照明光波波长。
(2) 式表示物体光波场是由空间频率为(kx, ky)的无穷多组平面波沿不同传播方向的叠加,每组平面波可表示为[21-22]:
\mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y + {\mathit{\boldsymbol{k}}_\mathit{z}}\mathit{z}} \right)} \right] (3) 当k02>kx2+ky2时,传播距离d1后其光场分布为:
\begin{array}{c} \mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right] \times \\ {\rm{exp}}({\rm{i}}\sqrt {\mathit{\boldsymbol{k}}_0^2 - \mathit{\boldsymbol{k}}_\mathit{x}^2 - \mathit{\boldsymbol{k}}_\mathit{y}^2} {\mathit{d}_1}) \end{array} (4) 引入一个相位延迟因子 {\rm{exp}}({\rm{i}}\sqrt {\mathit{\boldsymbol{k}}_0^2 - \mathit{\boldsymbol{k}}_\mathit{x}^2 - \mathit{\boldsymbol{k}}_\mathit{y}^2} {\mathit{d}_1}) ,表示传播距离d1后只引起了各个频谱分量的相对相位,属于低空间频率分量的传输波。
当k02 < kx2+ky2=k//2时, \sqrt {\mathit{\boldsymbol{k}}_0^2 - \mathit{\boldsymbol{k}}_\mathit{x}^2 - \mathit{\boldsymbol{k}}_\mathit{y}^2} = {\rm{i}}\mathit{\mu } 为纯虚数,其中 \mathit{\mu = }\sqrt {\mathit{\boldsymbol{k}}_x^2 - \mathit{\boldsymbol{k}}_y^2 - \mathit{\boldsymbol{k}}_0^2} ,传播距离d1后其光场分布为:
\mathit{U}\left( {{\mathit{\boldsymbol{k}}_x}, {\mathit{\boldsymbol{k}}_y}, 0} \right){\rm{exp}}( - \mathit{\mu }{\mathit{d}_1}){\rm{exp}}\left[ {{\rm{i}}\left( {{\mathit{\boldsymbol{k}}_x}x + {\mathit{\boldsymbol{k}}_y}y} \right)} \right] (5) 此称为倏逝波,随着传播距离d1的增加,其振幅按指数规律衰减,当传播距离大于一个波长λ时很快衰减为0。由于d1≫λ,倏逝波没有达到显微物镜面,不能参与远场成像。成像系统频谱分布如图 2所示。
能参与远场成像的传输波被限制为k02>kx2+ky2,其最大的横向空间波矢为:
{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}} = {\mathit{\boldsymbol{k}}_0} (6) 因此, 远场成像的横向最高空间频率被限制在[7, 20-21]:
{f_{//, {\rm{max}}}} = \frac{{{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} = \frac{1}{\mathit{\lambda }} (7) 如图 2所示,横向频率小于1/λ时,为传输波; 横向频率大于1/λ时,为倏逝波,沿着传播方向衰减,在探测器处无法探测到。因此远场成像系统的空间分辨率为[7, 20]:
\mathit{\delta = }\frac{1}{{2{\mathit{f}_{//, {\rm{max}}}}}} = \frac{\mathit{\lambda }}{2} (8) 因此普通光学显微镜的极限分辨率为λ/2。由于倏逝波携带了纳米结构样品的更多亚波长细节信息,为了在远场实现超越衍射极限的分辨率,需要收集到倏逝波。
1.2 基于微球的超分辨率成像
当横向波矢量满足k02 < kx2+ky2=k//2时,由(5)式可知,在传播距离为λ处倏逝波会衰减为0,在远场不能参与成像。当将微球放置于物体的表面, 如图 3所示。为了简单起见,分析y=0的情况。半径为R、折射率为n的微球放置于物体的表面,其与物体的接触点为O。取微球边缘的P点作为入射点,由于倏逝波在空气中传播波长λ的距离处时会衰减为0,因此需满足h < λ,其中h为P点到物体表面的垂直距离。u和w分别表示过P点的切向和法向方向,w与z之间的夹角为θ。在空气中,k0分解到x和y方向的波矢量分别为kx和ky。
微球中,分解到u和w方向的波矢量分别为ku和kw,且满足:
\mathit{\boldsymbol{k}}_u^2 + \mathit{\boldsymbol{k}}_w^2 = {\mathit{n}^2}\mathit{\boldsymbol{k}}_0^2 (9) 当倏逝波入射到微球时,通过Snell定量可知,微球内沿着u方向的波矢量ku可以表示为[18-19]:
\begin{array}{c} \mathit{\boldsymbol{k}}_u^2 = \mathit{\boldsymbol{k}}_x^2{\rm{co}}{{\rm{s}}^2}\mathit{\theta + }\mathit{\boldsymbol{k}}_\mathit{z}^2{\rm{si}}{{\rm{n}}^2}\mathit{\theta } = \\ \mathit{\boldsymbol{k}}_x^2{\rm{co}}{{\rm{s}}^2}\mathit{\theta } - {\left| {{\mathit{\boldsymbol{k}}_z}} \right|^2}{\rm{si}}{{\rm{n}}^2}\mathit{\theta } \end{array} (10) 当kx2cos2θ-|kz|2sin2θ>n2k02时,传播到微球中仍然为倏逝波,在远场衰减为0。
当kx2cos2θ-|kz|2sin2θ < n2k02时,在微球中将倏逝波转换成了传输波。因此,倏逝波通过微球后,微球将部分倏逝波转换成传输波,通过显微物镜成像在探测器上。f为显微物镜的焦距,d1和d2同样满足物像关系。由此可得kx满足如下的关系[18-20]:
\mathit{\boldsymbol{k}}_0^2 \le \mathit{\boldsymbol{k}}_x^2 \le \frac{{\mathit{\boldsymbol{k}}_0^2({\mathit{n}^2} - {\rm{si}}{{\rm{n}}^2}\mathit{\theta })}}{{1 - 2{\rm{si}}{{\rm{n}}^2}\mathit{\theta }}} (11) 式中, {\rm{sin}}\mathit{\theta } \approx \sqrt {2\mathit{Rh}} /\mathit{R} ,代入(11)式可得:
\mathit{\boldsymbol{k}}_x^2 \le \frac{{\mathit{\boldsymbol{k}}_0^2({\mathit{n}^2}\mathit{R} - 2\mathit{h})}}{{\mathit{R} - 4\mathit{h}}} (12) 物体散射后产生的倏逝波在微球里传播与微球的半径和折射率有关,且需满足(12)式。
由(12)式可知,通过微球后可获得最大的空间频率为:
{\mathit{f}_{{\rm{max}}}} = \frac{{{\mathit{\boldsymbol{k}}_{//, {\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} = \frac{1}{\mathit{\lambda }}\sqrt {\frac{{{\mathit{n}^2}\mathit{R} - 2\mathit{h}}}{{\mathit{R} - 4\mathit{h}}}} (13) 微球光学显微成像系统可分辨的最小距离为:
\mathit{d} = \frac{1}{{2{\mathit{f}_{{\rm{max}}}}}} = \frac{\mathit{\lambda }}{2}\sqrt {\frac{{\mathit{R} - 4\mathit{\lambda }}}{{{\mathit{n}^2}\mathit{R} - 2\mathit{\lambda }}}} (14) 由(14)式可知,微球光学显微成像系统可分辨的最小距离与微球的折射率和半径有关。由于n2R-2λ-(R-4λ)>0,由(14)式可得:
d < \frac{\mathit{\lambda }}{2} (15) 2. 仿真研究
利用COMSOL Multiphysics软件来分析微球的光纳米喷射特性。用波长为400nm的平行光照射折射率为1.46、半径分别为5μm和26.5μm的二氧化硅微球以及折射率为2、半径为26.5μm的钛酸钡微球后,产生的光纳米喷射结果分别如图 4a、图 4b和图 4c所示。分别在其光纳米喷射光斑的最大光强处作出沿着竖直方向上的强度分布如图 5所示。仿真结果表明,微球对平行光产生光纳米喷射的作用,且其光纳米喷射光斑的半径小于λ/2;从仿真结果图 4a、图 4b和图 5可以看出,对相同折射率不同半径的微球,光喷射的尺寸随着微球半径的增大而增大;从图 4b、图 4c和图 5可以看出,对相同半径不同折射率的微球,光喷射的尺寸随着折射率的增大而减小,说明微球具有收集倏逝波的作用。当成像系统中加入微球后可以使其分辨率突破衍射极限。
3. 基于微球超分辨率成像的实验研究
将钛酸钡微球与光学显微镜组合成远场超分辨率成像系统,其实验光路如图 6所示。所用的光学显微镜为OLYPUS BX51,显微物镜的数值孔径(numerical cperture, NA)为0.9,放大倍数为100×。实验中利用反射模式,中心波长为600nm的卤素灯作为光源; 显微镜的极限分辨率为406.6nm; 线宽为200nm、间隔为100nm的蓝光光盘作为被测对象。通过扫描电子显微镜(scanning electron microscopy, SEM)测得的蓝光光盘的结构如图 7a所示。由于蓝光光盘尺寸小于显微镜的极限分辨率,直接在显微镜下观察不到蓝光光盘的细节信息如图 7b所示。从仿真结果图 4可知, 折射率为1.46、半径为5μm的二氧化硅微球与折射率为2、半径为26.5μm的钛酸钡微球产生的光喷射尺寸相近,且都小于折射率为1.46、半径为26.5μm的二氧化硅微球。为了得到大视场的超分辨率成像,实验研究中所选用的微球参量为折射率为2、半径为26.5μm的钛酸钡微球,微球直接在显微镜下的成像如图 7c所示。在实验前将蓝光光盘上面的保护膜去掉,并将微球用去离子水稀释后,滴到蓝光光盘的表面上,等水蒸发完后,将微球半浸没在无水的乙醇溶液中。
Figure 7. The imaging results of the blu-ray disca—the image of the blu-ray disc by SEM b—the image of the blu-ray disc by optical microscopy c—the image of microsphere by optical microscopy& d—the image of the blu-ray disc by microsphere-based microscopy e—the magnified rectangle area marked with solid blue line in Fig.7d通过微球结合光学显微镜的成像系统得到蓝光光盘的像如图 7d所示。图 7e为图 7d方框区域的放大图。从图 7e可以看出, 蓝光光盘的细节信息被清晰分辨。实验结果说明, 实验中加入微球后可将携带物体细节信息的倏逝波转换成传输波参与远场成像,实现了样品的超分辨率成像。
4. 结论
针对对微纳结构元器件结构检测精度高、速度快的需求,设计了一套基于微球与传统光学显微镜相结合的远场超分辨率成像系统,并分析了该成像系统的实现远场超分辨率成像的物理机理。利用微球对平行光产生光纳米喷射的特性,将携带物体高频细节信息的倏逝波转换成传输波,然后传输波通过显微物镜在光电探测器处成像实现远场超分辨成像;实验中实现了对蓝光光盘的远场超分辨率成像,获得了100nm的分辨率。由于微球具有球对称性,其可以实现各个方向的超分辨率成像。
该成像方法具有系统结构简单、成本低等优点,可以应用于对微纳元件结构的检测、光刻技术、生物医学等领域。
-
表 1 样品配方
Table 1 Sample formula
sample formula(mass fraction) single base propellant nitrocotton(NC) 0.97(nitrogen content 0.126),additive 0.03 double base propellant nitrocotton(NC) 0.55(nitrogen content 0.126),nitroglycerin(NG) 0.43,additive 0.02 triple base propellant nitrocotton(NC) 0.25(nitrogen content 0.126),nitroglycerin(NG) 0.30,Hexogen(RDX) 0.45 monocrystal rock sugar sucrose 1.00 表 2 发射药冲击波特征速度
Table 2 Shockwave characteristic velocity of propellants
propellant shockwave characteristic velocity/(m·s-1) shockwave characteristic velocity(after correction)/(m·s-1) single base 1296 1047 double base 1256 982.5 triple base 1492 1140 表 3 发射药性能参数
Table 3 Propellant property parameters
propellant explosive force/(kJ·kg-1) explosive heat/(kJ·kg-1) explosive temperature/K single base 1028 3876 2997 double base 931.0 3188 2580 triple base 1226 4812 3618 表 4 发射药性能参数预测
Table 4 Prediction of propellants property parameters
propellant explosive force/(kJ·kg-1) explosive heat/(kJ·kg-1) explosive temperature/K measurement prediction error measurement prediction error calculation prediction error single base 1028 1000 2.7% 3876 3636 6.2% 2997 2857 4.7% double base 931.0 954.0 2.5% 3188 3388 6.3% 2580 2697 4.5% triple base 1226 1231 0.4% 4812 4853 0.9% 3618 3642 0.7% 表 5 发射药性能参数预测(修正后)
Table 5 Prediction of propellants property parameters (after correction)
propellant explosive force/(kJ·kg-1) explosive heat/(kJ·kg-1) explosive temperature/K measurement prediction error measurement prediction error calculation prediction error single base 1028 1044 1.6% 3876 3863 0.3% 2997 3004 0.2% double base 931.0 921.0 1.1% 3188 3196 0.3% 2580 2576 0.2% triple base 1226 1219 0.6% 4812 4818 0.1% 3618 3615 0.1% -
[1] 李强, 闫光虎, 张玉成, 等. NG含量对改性单基发射药燃烧性能的影响[J]. 火炸药学报, 2012, 35(1): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201201016.htm LI Q, YAN G H, ZHANG Y Ch, et al. Effect of NG content on burning performance of modified sing-base gun propellant[J]. Chinese Journal of Explosives & Propellants, 2012, 35(1): 73-76(in Chin-ese). https://www.cnki.com.cn/Article/CJFDTOTAL-BGXB201201016.htm
[2] THOMAS J C, MORROW G R, DILLIER C A M, et al. Comprehensive study of ammonium perchlorate particle size/concentration effects on propellant combustion[J]. Journal of Propulsion and Power, 2019, 36(1): 1-6.
[3] 郝海霞, 裴庆, 赵凤起, 等. 固体推进剂激光点火性能研究综述[J]. 含能材料, 2009, 17(4): 491-498. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL200904031.htm HAO H X, PEI Q, ZHAO F Q, et al. Summarization of laser ignition characteristics of solid propellant[J]. Chinese Journal of Energetic Materials, 2009, 17(4): 491-498 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL200904031.htm
[4] 张陆, 王霆威, 王晓军, 等. 激光敏感型含能配合物类起爆药研究进展[J]. 含能材料, 2022, 30(4): 385-395. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202204013.htm ZHANG L, WANG T W, WANG X J, et al. Review on laser sensitive energetic complex primary explosives[J]. Chinese Journal of Energetic Materials, 2022, 30(4): 385-395 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202204013.htm
[5] 刘彦汝, 孙杰, 金波, 等. 360 nm紫外激光辐照下HMX晶体的微观结构变化[J]. 含能材料, 2021, 29(12): 1208-1215. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202112010.htm LIU Y R, SUN J, JIN B, et al. Microstructure changes of HMX crystals irradiated by 360 nm UV laser[J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1208-1215 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL202112010.htm
[6] 伍俊英, 刘嘉锡, 杨利军, 等. 不同频率飞秒激光脉冲序列加工炸药过程安全性的数值计算[J]. 含能材料, 2021, 29(3): 192-201. WU J Y, LIU J X, YANG L J, et al. Numerical calculation of the safety of processing explosives with femtosecond laser sequence with different frequencies[J]. Chinese Journal of Energetic Materials, 2021, 29(3): 192-201.
[7] GOTTFRIED J L. Laser-induced plasma chemistry of the explosive RDX with various metallic nanoparticles[J]. Applied Optics, 2012, 51(7): B13-B21. DOI: 10.1364/AO.51.000B13
[8] KIMBLIN C, TRAINHAM R, CAPELLE G A, et al. Characterization of laser-induced plasmas as a complement to high-explosive large-scale detonations[J]. AIP Advances, 2017, 7(9): 095208. DOI: 10.1063/1.4999793
[9] HAUER M, FUNK D J, LIPPERT T, et al. Time resolved study of the laser ablation induced shockwave[J]. Thin Solid Films, 2004, 453/454(4): 584-588.
[10] LUSSELL F C D, HARMON R S, MCNESBY K L, et al. Laser-induced breakdown spectroscopy analysis of energetic materials[J]. Applied Optics, 2003, 42(30): 6148-6152. DOI: 10.1364/AO.42.006148
[11] ZHANG Zh, WANG A, WU J, et al. Spatial confinement effects of bubbles produced by laser ablation in liquids[J]. AIP Advances, 2019, 9(12): 125048. DOI: 10.1063/1.5127261
[12] 葛一凡, 陆旭, 刘玉柱. 基于激光诱导击穿光谱和神经网络的蛋壳研究[J]. 激光技术, 2022, 46(4): 532-537. https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202204015.htm GE Y F, LU X, LIU Y Zh. Research on eggshell via laser-induced breakdown spectroscopy and neural network[J]. Laser Technology, 2022, 46(4): 532-537(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JGJS202204015.htm
[13] GOTTFRIED J L. Influence of exothermic chemical reactions on laser-induced shock waves[J]. Physical Chemistry Chemical Physics, 2014, 16(39): 21452-21466. DOI: 10.1039/C4CP02903H
[14] GOTTFRIED J L. Laboratory-scale method for estimating explosive performance from laser-induced shock waves[J]. Propellants, Explosives, Pyrotechnics, 2015, 40(5): 674-681. DOI: 10.1002/prep.201400302
[15] COLLINS E S, GOTTFRIED J L. Laser-induced deflagration for the characterization of energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(6): 592-602. DOI: 10.1002/prep.201700040
[16] KALAM S A, MURTHY N L, MATHI P, et al. Correlation of molecular, atomic emissions with detonation parameters in femtosecond and nanosecond LIBS plasma of high energy materials[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(8): 1535-1546. DOI: 10.1039/C7JA00136C
[17] BISS M M, BROWN K E, TILGER C F. Ultra-high fidelity laser-induced air shock from energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(3): 396-405. DOI: 10.1002/prep.201900130
[18] 王茜蒨, 赵宇, 卢小刚, 等. 激光诱导击穿光谱与拉曼光谱技术在危险物检测中的研究进展[J]. 光谱学与光谱分析, 2017, 37(8): 2430-2434. https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708021.htm WANG X Q, ZHAO Y, LU X G, et al. Progress in laser induced breakdown spectroscopy and Raman spectroscopy for hazardous material detection[J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2430-2434 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GUAN201708021.htm
[19] 郭文灿, 郑贤旭, 张旭, 等. 含铝炸药在激光烧蚀下的发射光谱分布及瞬态温度测量[J]. 含能材料, 2018, 26(8): 671-676. https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201808011.htm GUO W C, ZHENG X X, ZHANG X, et al. Emission spectrum distribution and transient temperature measurement of aluminized explosives under laser ablation[J]. Chinese Journal of Energetic Materials, 2018, 26(8): 671-676 (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNCL201808011.htm
[20] VAPNIK V. The nature of statistical learning theory[M]. Berlin, Germany: Springer, 2000: 15-174.