高级检索

激光修锐砂轮工艺参量的预测和优化算法

周聪, 张玲, 陈根余, 邓辉, 蔡颂

周聪, 张玲, 陈根余, 邓辉, 蔡颂. 激光修锐砂轮工艺参量的预测和优化算法[J]. 激光技术, 2015, 39(3): 320-324. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.008
引用本文: 周聪, 张玲, 陈根余, 邓辉, 蔡颂. 激光修锐砂轮工艺参量的预测和优化算法[J]. 激光技术, 2015, 39(3): 320-324. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.008
ZHOU Cong, ZHANG Ling, CHEN Genyu, DENG Hui, CAI Song. Prediction and optimization algorithm of process parameters for laser dressing grinding wheels[J]. LASER TECHNOLOGY, 2015, 39(3): 320-324. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.008
Citation: ZHOU Cong, ZHANG Ling, CHEN Genyu, DENG Hui, CAI Song. Prediction and optimization algorithm of process parameters for laser dressing grinding wheels[J]. LASER TECHNOLOGY, 2015, 39(3): 320-324. DOI: 10.7510/jgjs.issn.1001-3806.2015.03.008

激光修锐砂轮工艺参量的预测和优化算法

基金项目: 

国家科技重大专项课题资助项目(2012ZX04003-101)

详细信息
    作者简介:

    周聪(1979-),男,助理研究员,现主要从事激光烧蚀加工、激光焊接焊缝跟踪技术、激光加工制造过程中的信号检测与控制技术及其应用方面的研究。E-mail:hdgychen@163.com

  • 中图分类号: TN249

Prediction and optimization algorithm of process parameters for laser dressing grinding wheels

  • 摘要: 为了找到一种适用于激光修锐砂轮工艺参量预测和优化的方法,采用神经网络和粒子群算法,建立了激光修锐砂轮工艺参量优化模型。首先构建了工艺参量与工件表面粗糙度之间映射关系的神经网络模型,然后基于预测模型采用粒子群算法实现工艺参量优化,最后采用粒子群算法优化获取的5组工艺参量进行了激光修锐试验。结果表明,样本值与神经网络仿真输出值的相对误差小于3%,试验值与期望值的相对误差控制在6%以内。综合说明该优化模型具备良好的优化能力。
    Abstract: In order to find a method of prediction and optimization of laser dressing grinding wheel, an optimization model of process parameters for laser dressing grinding wheels was established based on the neural network and particle swarm optimization. Firstly, the neural network model mapping the relationship between the process parameters and the specimen surface roughness was constructed . Then, the process parameters were optimized by means of the particle swarm optimization algorithm based on the predication model. Finally, laser dressing experiments were carried out based on 5 groups of parameters optimized by the particle swarm algorithm. Experimental results show that the relative error between the sample value and output value from neural network is less than 3% and the relative error between the test value and the expected value is lower than 6%. In conclusion, the model has good ability of optimization.
  • [1]

    BABU N R, RADHAKRISHNAN V, MURTI Y V G S. Investigation on laser dressing of grinding wheelsPart Ⅰ: preliminary study [J]. Journal of Engineering for Industry, 1989,111(3): 244-252.

    [2]

    CHEN G Y, LI Z G, BU C, et al. The experiment studies of dressing of bronze-bonded diamond grinding wheels using a pulsed fiber laser [J]. Laser Technology, 2013, 37(4): 705-711(in Chinese).

    [3]

    MA H L, CHEN G Y, LIU L, et al. Truing and dressing super-abrasive wheels by acoustic-optic Q-switched YAG pulsed laser [J]. Journal of Hunan University (Natural Science Edition), 2004, 31(2): 56-59(in Chinese).

    [4]

    DOLDA C, TRANSCHEL R, RABIEYA B M, et al. A study on laser touch dressing of electroplated diamond wheels using pulsed picosecond laser sources [J]. Manufacturing Technology, 2011, 60(1): 363-366.

    [5]

    CHRISTIAN W, MOHAMMAD R, MAXIMILIAN W, et al. Dressing and truing of hybrid bonded CBN grinding tools using a short-pulsed fiber laser [J]. Manufacturing Technology, 2011, 60(1): 279-282.

    [6]

    CHEN G Y. The research on mechanism and technology for laser truing and dressing of bronze-bonded diamond grinding wheels by acoustic-optic Q-switched Nd:YAG pulsed laser [D]. Changsha: Hunan University, 2006: 28-34(in Chinese).

    [7]

    CHEN G Y, CHEN C, BU C, et al. Numerical simulation and experiment for online truing and dressing of bronze-bonded diamond grinding wheels with laser [J]. Laser Technology, 2012, 36(4): 433-437(in Chinese).

    [8]

    YIN C Q. Methods and applications of artificial intelligence [M]. Wuhan: Huazhong University of Science and Technology Press, 2007: 224-237(in Chinese).

    [9]

    HORNIK K, STINCHCOME M, WHITE H. Multilayer feed-forward networks are universal approximators[J]. Neural Networks, 1989, 2(5):359-366.

    [10]

    LEI D M, YAN X P. Intelligent multi-objective optimization algorithm and its application [M]. Beijing: Science Press, 2009: 78-80(in Chinese).

    [11]

    PAN F. Particle swarm optimizer and multi-object optimization[M]. Beijing: Beijing University of Technology Press, 2013: 9-14(in Chinese).

  • 期刊类型引用(4)

    1. 朱毅,梅丽芳,黄佳成,周伟,陈根余,王昊. 基于神经网络激光修整砂轮去除效率的预测. 应用激光. 2025(01): 58-67 . 百度学术
    2. 黄佳成,陈根余,周伟,朱毅,王昊. 激光修整青铜金刚石砂轮预测模型与优化研究. 激光技术. 2024(03): 405-410 . 本站查看
    3. 李竹曼,高向东,张南峰. 大功率碟片激光焊接状态多特征融合分析法. 激光技术. 2017(05): 764-768 . 本站查看
    4. 孙建国,李胜,何镇盐,华希俊,张培耘,符永宏,纪敬虎. 激光微织构用吸光涂层正交工艺试验研究. 激光技术. 2016(06): 907-911 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  7
  • HTML全文浏览量:  0
  • PDF下载量:  6
  • 被引次数: 7
出版历程
  • 收稿日期:  2014-04-20
  • 修回日期:  2014-05-03
  • 发布日期:  2015-05-24

目录

    /

    返回文章
    返回