高级检索

大功率碟片激光焊接状态多特征融合分析法

李竹曼, 高向东, 张南峰

李竹曼, 高向东, 张南峰. 大功率碟片激光焊接状态多特征融合分析法[J]. 激光技术, 2017, 41(5): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029
引用本文: 李竹曼, 高向东, 张南峰. 大功率碟片激光焊接状态多特征融合分析法[J]. 激光技术, 2017, 41(5): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029
LI Zhuman, GAO Xiangdong, ZHANG Nanfeng. Analysis of high-power disk laser welding status based on multi-feature fusion[J]. LASER TECHNOLOGY, 2017, 41(5): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029
Citation: LI Zhuman, GAO Xiangdong, ZHANG Nanfeng. Analysis of high-power disk laser welding status based on multi-feature fusion[J]. LASER TECHNOLOGY, 2017, 41(5): 764-768. DOI: 10.7510/jgjs.issn.1001-3806.2017.05.029

大功率碟片激光焊接状态多特征融合分析法

基金项目: 

广东省计算机集成制造重点实验室开放基金资助项目 CIMSOF2016008

广州市科学研究专项资金资助项目 201510010089

广东省科技发展专项资金资助项目 2016A010102015

详细信息
    作者简介:

    李竹曼(1991-), 女, 硕士研究生, 主要研究方向为激光焊接技术

    通讯作者:

    高向东, E-mail:gaoxd666@126.com

  • 中图分类号: TG456.7

Analysis of high-power disk laser welding status based on multi-feature fusion

  • 摘要: 为了实现大功率激光焊接状态的实时检测,采用了基于传感器信号多特征融合进行焊缝成形预测的方法,以大功率碟片激光焊接304不锈钢为试验对象,应用分光仪获取焊接过程中的光谱分布,并用紫外波段和可见光波段高速摄像机采集金属蒸气视觉图像,对所提取的特征参量与焊接状态之间的关系进行了理论分析和实验验证。结果表明,通过建立后向传播神经网络焊缝成形预测模型,取得了熔宽和熔深的预测绝对误差平均值数据分别为0.18mm和0.72mm。该方法能够准确反映熔宽及熔深的状态变化,这一结果对大功率激光焊接状态在线监测是有帮助的。
    Abstract: In order to monitor high-power laser welding status in real time, the method based on multi-feature fusion was put forward to predict the weld formation. Choosing the welding of 304 austenitic stainless steel plates by high power disk laser as the experimental target, the spectral distribution of laser welding was obtained by a spectrometer. A high-speed camera in ultraviolet band and visible light band was applied to capture the metal vapor visual images. Comprehensive analysis and experimental verification were conducted on the relationship between characteristic parameters and welding status. Back propagation neural network model was set up with characteristic parameters to predict the weld formation, and the average values of relative errors of weld width and penetration are 0.18mm and 0.72mm. Experimental results show that the proposed method can reflect the state change of weld width and penetration accurately and is helpful for monitoring high-power disk laser welding process in real time.
  • 感谢日本大阪大学接合科学研究所片山实验室提供的焊接试验帮助。
  • Figure  1.   a—schematic diagram of laser welding b—diagram of weldment

    Figure  2.   a—spectral distribution b—relationship between intensity and wavelength

    Figure  3.   Characteristic parameters of spectral

    a—electron temperature b—radiation intensity

    Figure  4.   Characteristic parameters of visual images of metal vapor

    a—gray image b—binary image c—binary image of metal vapor d—area e—orientation of centroid

    Figure  5.   Actual parameters of weld bead

    Figure  6.   Mean values of characteristic parameters

    Table  1   Spectroscopy physical parameter of spectral line

    λi/nm Ei/cm-1 gi Ai/s-1
    516.75 31322.613 7 2.72×106
    561.56 44677.006 9 2.64×107
    下载: 导出CSV

    Table  2   Relative fluctuation of characteristic parameters

    region T/K G/a.u. S/pixel H/(°)
    A 231.20 1.80×103 1.38×103 18.37
    B 199.61 1.52×103 1.00×103 23.55
    C 299.24 1.37×103 2.26×103 9.64
    下载: 导出CSV

    Table  3   Predicting results of neural network

    average value of errors/mm number of neurons in the hidden layer
    5 6 7
    e1 0.21 0.18 0.22
    e2 0.76 0.72 0.74
    下载: 导出CSV
  • [1]

    LIU X X, HUANG R, YAO G, et al. Numerical simulation of the temperature field of laser butt welding of titanium alloy sheet[J]. Laser Technology, 2013, 37(5):700-704(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201305030

    [2]

    CUI L, LI X Y, HE D Y, et al. Microstructure investigation of Nd:YAG laser welded 5A90 aluminum-lithium alloys[J]. Transactions of The China Welding Institution, 2010, 31(9):77-80(in Chinese). http://en.cnki.com.cn/Article_en/CJFDTOTAL-HJXB201009018.htm

    [3]

    GAO X D, SUN Y, YOU D Y, et al. Multi-sensor information fusion for monitoring disk laser welding[J]. International Journal of Advanced Manufacturing Technology, 2015, 85(5/8):1167-1175. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c3da4d8a5962cd694f99622d9f04846e

    [4]

    TENNER F, BROCK C, KLÄMPFL F, et al. Analysis of the correlation between plasma plume and keyhole behavior in laser metal welding for the modeling of the keyhole geometry[J]. Optics & Lasers in Engineering, 2015, 64(1):32-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5a75bd5c3da568aa195e25535ec18a71

    [5]

    GAO X D, WANG R L, LONG G F, et al. Study of characteristics of plume based on hue-saturation-intensity during high-power disk laser welding[J]. Acta Physica Sinica, 2012, 61(14):148103(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=wlxb201214059

    [6]

    LI Zh Y. Welding plasma radiation spectrum theory and industrial application basis[M]. Beijing:Peking University Press, 2013:57-62(in Chinese).

    [7]

    GAO X D, LIU G Q. Elucidation of metallic plume and spatter characteristics based on SVM during high-power disk laser welding[J]. Plasma Science and Technology, 2015, 17(1):32-36. DOI: 10.1088/1009-0630/17/1/07

    [8]

    TANG J, ZUO D, WU T, et al. Spatio-temporal evolution of laser-induced air plasma in the stage of laser pulse action[J]. Optics Communications, 2013, 289(4):114-118. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a79ba902e3033f8cb4bbbca20d6f65c1

    [9]

    ZHAI Y, ZHU R H, SHEN H. Influence of laser power and incident angle as well as testing distance on laser inducted breakdown spectroscopy(LIBS) technology for spectroscopy diagnosis and multi-element analysis[J]. Spectroscopy and Spectral Analysis, 2011, 31(10):2634-2638(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201110009

    [10]

    ZHAO X X, LUO W F, ZHANG X W, et al. Measurement of brass plasma parameters based on laser-induced breakdown spectroscopy[J]. Laser Technology, 2013, 37(1):93-96(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201301023

    [11]

    DU X, YANG L J, LIU T, et al. The spectral analysis of laser-induced plasma in laser welding with various protecting conditions[J]. Spectroscopy & Spectral Analysis, 2016, 36(1):15-19(in Chinese). http://www.ncbi.nlm.nih.gov/pubmed/27228732

    [12]

    LIU T, YANG L J, WANG L J, et al. A comparative analysis of the passive electric probe detection and spectrum diagnosis of laser-induced plasma[J]. Spectroscopy & Spectral Analysis, 2014, 34(2):289-292(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gpxygpfx201402001

    [13]

    YU F, XU X. A short-term load forecasting model of natural gas based on optimized genetic algorithm and improved BP neural network[J]. Applied Energy, 2014, 134:102-113. DOI: 10.1016/j.apenergy.2014.07.104

    [14]

    GUO H F, LI J L, SUN T. Roughness prediction of kerf cut with fiber laser based on BP artificial neural networks[J]. Laser Technology, 2014, 38(6):798-803(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201406016

    [15]

    ZHOU C, ZHANG L, CHEN G Y, et al. Prediction and optimization algorithm of process parameters for laser dressing grinding wheels[J]. Laser Technology, 2015, 39(3):320-324(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgjs201503008

图(6)  /  表(3)
计量
  • 文章访问数:  5
  • HTML全文浏览量:  0
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-10-09
  • 修回日期:  2017-01-10
  • 发布日期:  2017-09-24

目录

    /

    返回文章
    返回